Moore-Penrose 广义逆/伪逆 (The Moore-Penrose Pseudoinverse)

本文探讨了矩阵求逆通常仅适用于方阵的情况,并介绍了非方阵的伪逆概念。当线性方程组的约束超过未知数或者反之,矩阵的伪逆提供了求解的方法。伪逆可以通过奇异值分解来计算,并且在不同情况下有不同的应用:当列数多于行数时,给出最小欧氏范数解;行数多于列数时,提供最接近解的方案。奇异值分解和伪逆在处理过度约束或欠约束问题时扮演关键角色。
摘要由CSDN通过智能技术生成

        矩阵求逆运算一般是对于方阵而言,矩阵求逆没有对非方阵定义。非方阵求逆会给我们带来很多便捷,假设我们得到矩阵A的左逆矩阵B,对于线性方程组Ax=y,我们可以这样求得:x=By;根据问题的结构,有可能无法设计一个从A到B的单一映射。

        如果矩阵A更高(行数m大于列数n,即未知数的约束方程可能大于未知数的数目),那么这个方程就有可能没有解。如果矩阵A更宽(行数m小于列数n,即未知数的约束方程一定小于未知数的数目),那么就有多种解 。在这些情况下,Moore-Penrose伪逆允许我们取得一些进展。矩阵A的伪逆定义如下:

 eq?A%5E%7B+%7D%3D%5Clim_%7B%5Calpha%20%5Crightarrow%200%7D%28A%5E%7BT%7DA+%5Calpha%20I%29%5E%7B-1%7DA%5E%7BT%7D

       用上述定义计算伪逆是不实用的,计算伪逆的实用算法基于如下公式:

eq?A%5E%7B+%7D%3DVD%5E%7B+%7DU%5E%7BT%7D 

        其中矩阵U、D、V是矩阵A的奇异值分解(上篇文章所讲);对角矩阵D的伪逆eq?D%5E%7B+%7D是通过取其非零元素的倒数,然后所得矩阵进行转置得到的。当A的列数多于行数时,那么使用伪逆解线性方程组就提供了许多可能的解之一,具体地说,它提供了在所有可能的解中具有最小欧氏范数eq?%7C%7Cx%7C%7C_%7B2%7D的解eq?x%3DA%5E%7B+%7Dy。当A的行数多于列数时,可能方程组是没有解的,在这种情况下,根据欧式范数eq?%5Cleft%20%5C%7C%20Ax-y%20%5Cright%20%5C%7C_%7B2%7D,使用伪逆给出了使Ax尽可能接近y的解x。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嚯嚯火火火

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值