Moore-Penrose伪逆

对于非方阵而言,其逆矩阵没有定义。假设在下列问题中,我们希望通过矩阵A的左逆B来求解线性方程,

Ax=y

等式两边左乘左逆B后,我们得到,
x=By

取决于问题的形式,我们可能无法设计一个唯一的映射将A映射到B
如果矩阵A的行数大于列数,那么上述方程可能没有解。如果矩阵A的列数大于行数,那么上述方程可能有多个解。
Moore-Penrose伪逆使我们在这类问题上取得了一定的进展。矩阵A的伪逆定义为,
A+=limα0(ATA+αI)1AT

计算伪逆的算法没有基于这个定义,而是使用下面的公式,
A+=VD+UT

其中,矩阵UDV是矩阵A经奇异值分解后得到的矩阵。对角矩阵D的伪逆D+是其非零元素取倒数再经转置后得到的。
当矩阵A的列数多于行数时,使用伪逆求解线性方程是众多可能解法中的一种。特别的,x=A+y是方程所有可行解中欧几里德范数x2最小的一个。
当矩阵A的行数多于列数时,可能没有解。在这种情况下,通过伪逆求得的x使得Axy的欧几里德距离Ax-y2最小。

阅读更多

没有更多推荐了,返回首页