AGV调度-ProfControl V8.0 之绘制地图(学习之路)

ProfControlV8是一款面向智能工厂和智慧物流的全组态控制系统,支持AGV配置、地图绘制、导航算法和协议设置。用户可进行地图绘制,AGV视图和模型配置,以及AGV仿真导航和协议配置。系统采用先进UI设计,提升图形性能,兼容多种导航方式,满足复杂环境的导航需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

ProfControl V8是一款全组态的面向智能工厂及智慧物流的自动化控制系统。

一、简单绘制一个地图

二、AGV的视图配置

1.在所绘制地图上放置AGV

2.AGV视图配置

(1)AGV角度

(2)AGV尺寸

(3)AGV所在图层(默认设备层)

3.AGV模型配置

(1)通用设置

(2)AGV特征

(3)AGV附加属性

三、AGV仿真导航及协议配置

1.配置协议

 2.仿真导航

四、实习分享


ProfControl V8是一款全组态的面向智能工厂及智慧物流的自动化控制系统。

 

  • 先进的UI设计以满足日益增长的现场设备数量,确保在极度复杂的地图及设备情况下的高效运行。

全新的UI系统采用了最新的图形化技术,可以满足场景中同时拥有50k+以上元素的需求。比v6图形性能提高不低于20倍。

  • 完全兼容磁导航、二维码导航及激光SLAM导航的全新的地图系统。

增加了贝塞尔路径、复合路径、B样条等全新的路径,完美支持SLAM导航中各种奇怪且特殊的行驶路径需求。

  • 全新的导航算法,以满足复杂的棋盘格及SLAM导航需求。

基于遗传算法的全新导航规划,可以轻松应对复杂棋盘格导航的需求,且对于过道通行能力有限的导航需求具有先天的优势。

  • 全新的规则算法,以满足不同现场极端的导航需求。
  • 完整内嵌WCS及WMS,满足AllInOne系统的需求。
  • 内嵌复杂坐标系统,支持多楼层,多区域的坐标拟合需求。
  • 完全独立的协议模板,支持任意拓展各种现场设备。


  • 一、简单绘制一个地图

 1.按住shift键,用鼠标框选住所画地图

2. 右击点击自动分割相交路径

 3.在上方工具栏中的小工具中选择【路径端点添加站点】

4.结果如图所示

二、AGV的视图配置

1.在所绘制地图上放置AGV

2.AGV视图配置

选中AGV,进行右击可以查看AGV属性或者直接点击上方属性。

可以设置

(1)AGV角度

(2)AGV尺寸

(3)AGV所在图层(默认设备层)

3.AGV模型配置

(1)通用设置

  • 对AGV进行命名,调整坐标

(2)AGV特征

  • AGV支持旋转
  • AGV支持横移选项
  • AGV单向行驶
  • AGV前行、反向避障保护距离
  • 设置AGV图标,可根据现场AGV样式选择对应AGV图标

  • AGV分类

对不同类型的AGV进行分类

【1】在上方工具栏设置中选择【任务编辑器】

 【2】 点击左上角绿色加号,设置AGV属性保存

 【3】可以在单一AGV属性页面下进行选择归属分类

(3)AGV附加属性

可以选择AGV的其他配置属性

三、AGV仿真导航及协议配置

1.配置协议

(1)在上方选项卡的设置中,选择【通讯协议配置】

 (2)将RWPV4_Share进行添加至右侧

 (3)回到设置选项卡下【通讯配置】选择添加,注意要点击绑定客户端设备,在地图上选中要绑定的AGV设备,为AGV添加IP地址。

 

 2.仿真导航

(1)在上方工具栏中选择仿真选项卡中的【开始仿真】

 (2)进入仿真模式

 (3)三种仿真方法

第一种:

选中需要导航的AGV右击,选择【导航】,出现请选择需要导航的目标站点后,选择站点。

 

 

第二种:

 按住键盘U键,鼠标点击AGV根据提示再点击需要导航的点,完成导航(输入法需要为英文)

 第三种:

设置选项卡下的任务编辑器中选择AGV和AGV需要导航到的点位

四、实习分享

Profcontrol平台,以移动机器人AGV调度控制软件为核心,为物流领域的无人化,制造领域的柔性化,提供软件及服务。

记录在Profcontrol平台实习过程中的学习心得,有不足的地方欢迎大家评论区咨询讨论。

平台官网:讯易铂控,环野电子 (profcontrol.cn)

哔哩哔哩视频链接:【ProfControl V8.0 之绘制地图——AGV(学习之路)】 https://www.bilibili.com/video/BV1es4y167Wp/?share_source=copy_web&vd_source=f61ba19a0ee4955281848e3a6cba60cb

要使用OpenCV进行图像去脏点,可以使用中值滤波或FastNlMeansDenoisingColored方法。中值滤波可以通过对每个通道进行中值滤波来去除噪点。代码示例如下: ```cpp #include <opencv2/core/core.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <opencv2/highgui/highgui.hpp> #include <iostream> using namespace std; using namespace cv; int main() { Mat srcImage = imread("input.jpg"); if (!srcImage.data){ cout << "Failed to read image" << endl; return -1; } Mat srcGray; cvtColor(srcImage, srcGray, CV_BGR2GRAY); // 中值滤波去噪点 medianBlur(srcGray, srcGray, 1.5); // 二值化提取修复区域 Mat srcThres; threshold(srcGray, srcThres, 242, 255, CV_THRESH_BINARY); // 修复图像 Mat inpaint_result; inpaint(srcImage, srcThres, inpaint_result, 1, INPAINT_TELEA); imshow("Original Image", srcImage); imshow("Inpaint Result", inpaint_result); waitKey(0); return 0; } ``` 另一种方法是使用FastNlMeansDenoisingColored方法,它可以去除彩色图像中的噪点。代码示例如下: ```cpp #include <opencv2/core/core.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <opencv2/highgui/highgui.hpp> #include <iostream> using namespace std; using namespace cv; int main() { Mat srcImage = imread("input.jpg"); if (!srcImage.data){ cout << "Failed to read image" << endl; return -1; } Mat result; fastNlMeansDenoisingColored(srcImage, result); imshow("Original Image", srcImage); imshow("Denoised Image", result); waitKey(0); return 0; } ``` 请注意,以上代码中的"input.jpg"应替换为您要处理的图像的路径。 #### 引用[.reference_title] - *1* [Opencv2.4学习::图像污点修复](https://blog.csdn.net/dieju8330/article/details/82762707)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [【图像处理】镜头去污渍(未完全实现):python + OpenCV](https://blog.csdn.net/qq_42792802/article/details/126253343)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [基于OpenCvSharp的数字图像处理 - 图像优化](https://blog.csdn.net/lweiyue/article/details/105784854)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值