线性规划建模--基础篇

1. 题目

(产品组合问题) 某公司现有三条生产线来生产两种新产品,其主要数据如 Table 1 所示(时间单位为小时,利润单位为百元)。请问如何生产可以使公司每周利润最大?
在这里插入图片描述

2. 分析并建模

  • 决策变量。公司每周的利润是和甲、乙两种产品相关联的,因此,甲、乙两种产品每周的生产量就是决策变量。
    设每周生产的产品甲为 x 1 x_1 x1,生产的产品乙为 x 2 x_2 x2
  • 约束条件。每周的产品生产要收到三条生产线的可用生产时间的约束(限制),全为 “ ≤ \leq ” 的不等式约束。
  • 目标函数。公司每周的生产利润(可记为 z z z,单位为百元)为最大。

确定目标函数:

  • 每周两种产品的销售金额为 ( 7 x 1 + 9 x 2 (7x_1 + 9x_2 (7x1+9x2);
  • 生产甲、乙两种产品,
    生产线一消耗资源的成本为 x 1 x_1 x1
    生产线二消耗资源的成本为 2 x 2 2x_2 2x2
    生产线三消耗资源的成本为 ( 3 x 1 + 2 x 2 ) (3x_1 + 2x_2) (3x1+2x2)
    总消耗的资源成本为 ( 4 x 1 + 4 x 2 ) (4x_1 + 4x_2) (4x1+4x2)
  • 每周的利润为销售金额与资源消耗成本之差, z = ( 7 x 1 + 9 x 2 ) − ( 4 x 1 + 4 x 2 ) = ( 3 x 1 + 5 x 2 ) z = (7x_1 + 9x_2) - (4x_1 + 4x_2) = (3x_1 + 5x_2) z=(7x1+9x2)(4x1+4x2)=(3x1+5x2)
    目标是公司每周利润最大,
    max ⁡ z = 3 x 1 + 5 x 2 \max z = 3x_1 + 5x_2 maxz=3x1+5x2

确定约束条件:

  • 生产线一的使用时间不能超过 4 小时,即 x 1 ≤ 4 x_1 \leq 4 x14
  • 生产线二的使用时间不能超过 12 小时,即 2 x 2 ≤ 12 2x_2 \leq 12 2x212
  • 生产线三的使用时间不能超过 18 小时,即 3 x 1 + 2 x 2 ≤ 18 3x_1 + 2x_2 \leq 18 3x1+2x218
    x 1 ≤ 4 2 x 2 ≤ 12 3 x 1 + 2 x 2 ≤ 18 \begin{aligned} x_1 &\leq 4 \\ 2x_2 &\leq 12 \\ 3x_1 + 2x_2 &\leq 18 \end{aligned} x12x23x1+2x241218
    并且,甲、乙产品的生产数量应该大于等于 0 ,即 x 1 ≥ 0 , x 2 ≥ 0 x_1 \geq 0,x_2 \geq 0 x10x20

综上,产品组合问题可抽象地归为一个数学模型:
max ⁡ z = 3 x 1 + 5 x 2 s.t. { x 1 ≤ 4 , 2 x 2 ≤ 6 , 3 x 1 + 2 x 2 ≤ 18 , x 1 ≥ 0 , x 2 ≥ 0 , \begin{aligned} \max & z = 3x_1 + 5x_2 \\ & \text{s.t.} \begin{cases} x_ 1 \leq 4, \\ 2x_2 \leq 6, \\ 3x_1 + 2x_2 \leq 18, \\ x_1 \geq 0, x_2 \geq 0, \\ \end{cases} \end{aligned} maxz=3x1+5x2s.t.x14,2x26,3x1+2x218,x10,x20,
其中, max ⁡ \max max 是最大化(maximize)的英文简称;s.t. 是受约束于(subject to)的英文简称; x = ( x 1 , x 2 ) T ∈ ℜ 2 \bm{x} = (x_1, x_2)^\text{T} \in \Re^2 x=(x1,x2)T2 为 2 维向量。

在上面的数学模型中,决策变量为可控的连续变量,目标函数和约束条件都是线性的,称为线性规划问题。

3. 线性规划的原始问题与一般问题

在这里插入图片描述

4. 一般形式

对于最大化利润的一般产品组合问题,不妨设有 m m m 类资源用于生产 n n n 种不同产品,各种资源的拥有量分别为 b i ( i = 1 , 2 , … , m ) b_i (i = 1, 2, \dots, m) bi(i=1,2,,m)。又生产单位第 j j j 种产品 ( j = 1 , 2 , … , n ) (j = 1, 2, \dots, n) (j=1,2,,n) 时将消费第 i i i 类资源 a i j a_{ij} aij 单位,利润为 c j c_j cj。Table 3 给出了线性规划模型的所需数据。
在这里插入图片描述
仍用 x j ( j = 1 , 2 , … , n ) x_j (j = 1, 2, \dots, n) xj(j=1,2,,n) 代表第 j j j 种产品的生产数量,则线性规划模型为:
max ⁡ z = c 1 x 1 + c 2 x 2 + ⋯ + c n x n s.t. { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n ≤ b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n ≤ b 2 , ⋮ , a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n ≤ b m , x 1 ≥ 0 , x 2 ≥ 0 , … , x n ≥ 0 , \begin{aligned} \max & z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \\ &\text{s.t.} \begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \leq b_1, \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \leq b_2, \\ \qquad \qquad \qquad \qquad \vdots, \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \leq b_m, \\ x_1 \geq 0, x_2 \geq 0, \dots, x_n \geq 0, \\ \end{cases} \end{aligned} maxz=c1x1+c2x2++cnxns.t.a11x1+a12x2++a1nxnb1,a21x1+a22x2++a2nxnb2,,am1x1+am2x2++amnxnbm,x10,x20,,xn0,
其中,目标函数可以为 min ⁡ \min min 的形式,函数约束中 “ ≤ \leq ” 可以为 “=” 或 “ ≥ \geq ”,变量的非负性限制也可以取消。

以上的模型简写形式为:
max ⁡ z = ∑ j = 1 n c j x j s.t. { ∑ j = 1 n a i j x j ≤ b i ( i = 1 , 2 , … , m ) , x j ≥ 0 ( j = 1 , 2 , … , n ) . \begin{aligned} \max & z = \sum_{j=1}^{n} c_j x_j \\ & \text{s.t.} \begin{cases} \sum_{j=1}^{n} a_{ij} x_j \leq b_i \quad(i = 1, 2, \dots, m), \\ x_j \geq 0 \quad \quad \quad \quad \quad (j = 1, 2, \dots, n). \\ \end{cases} \end{aligned} maxz=j=1ncjxjs.t.{j=1naijxjbi(i=1,2,,m),xj0(j=1,2,,n).

用向量形式表达时,上述模型可写为:
max ⁡ z = c x s.t. { ∑ j = 1 n p j x j ≤ b , x ≥ 0 , \begin{aligned} \max &z = \bm{cx} \\ &\text{s.t.} \begin{cases} \sum_{j=1}^{n} \bm{p}_j x_j \leq \bm{b}, \\ \bm{x} \geq 0, \\ \end{cases} \end{aligned} maxz=cxs.t.{j=1npjxjb,x0,
其中, c = ( c 1 , c 2 . … , c n ) \bm{c} = (c_1, c_2. \dots, c_n) c=(c1,c2.,cn) x = ( x 1 , x 2 , … , x n ) T \bm{x} = (x_1, x_2, \dots, x_n)^\text{T} x=(x1,x2,,xn)T p j = ( a 1 j , a 2 j , … , a m j ) T \bm{p}_j = (a_{1j}, a_{2j}, \dots, a_{mj})^\text{T} pj=(a1j,a2j,,amj)T b = ( b 1 , b 2 , … , b m ) T \bm{b}=(b_1, b_2, \dots, b_m)^\text{T} b=(b1,b2,,bm)T

用矩阵式来表示可写成:
max ⁡ z = c x s.t. { A x ≤ b , x ≥ 0 , \begin{aligned} \max & z = \bm{cx} \\ &\text{s.t.} \begin{cases} \bm{Ax} \leq \bm{b}, \\ \bm{x} \geq \bm{0}, \\ \end{cases} \end{aligned} maxz=cxs.t.{Axb,x0,
其中, A = ( a i j ) m × n \bm{A}=(a_{ij})_{m \times n} A=(aij)m×n 称为约束方程组变量的系数矩阵(或者简称约束变量的系数矩阵)。

5. 标准形式

为求解方便,需要把上述模型变成标准形式,即模型的目标函数为求极大值(某些要求标准形式是求极小值),约束条件全为等式,约束条件右端常数项为非负值,变量取值为非负。
max ⁡ z = ∑ j = 1 n c j x j s.t. { ∑ j = 1 n a i j x j = b i ( i = 1 , 2 , … , m ) , x j ≥ 0 ( j = 1 , 2 , … , n ) . \begin{aligned} \max &z = \sum_{j=1}^{n} c_j x_j \\ &\text{s.t.} \begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i \quad (i = 1, 2, \dots, m), \\ x_j \geq 0 \quad \quad \quad \quad \quad(j = 1, 2, \dots, n). \end{cases} \end{aligned} maxz=j=1ncjxjs.t.{j=1naijxj=bi(i=1,2,,m),xj0(j=1,2,,n).

对非标准形式的线性规划问题,可通过下列方法化为标准形式。

(1) 目标函数求极小值。即 min ⁡ z = ∑ j = 1 n c j x j \min z = \sum_{j=1}^{n} c_j x_j minz=j=1ncjxj,令 z ′ = − z z' = - z z=z 即可。

(2) 约束条件为不等式。当 “ ≤ \leq ” 时,如 x 1 ≤ 4 x_1 \leq 4 x14,可 x 1 + x 3 = 4 x_1 + x_3 = 4 x1+x3=4,则 x 3 ≥ 0 x_3 \geq 0 x30。当 “ ≥ \geq ”,如 0.6 x 1 + 0.4 x 2 ≥ 6 0.6x_1 + 0.4 x_2 \geq 6 0.6x1+0.4x26,可 0.6 x 1 + 90.4 x 2 − x 4 = 6 0.6x_1 + 90.4x_2 - x_4 = 6 0.6x1+90.4x2x4=6,则 x 4 ≥ 0 x_4 \geq 0 x40

x 3 x_3 x3 x 4 x_4 x4 是新加入的变量,取值均为非负,加到原约束条件中区的目的是使不等式转化为等式。其中, x 3 x_3 x3 称为松弛变量, x 4 x_4 x4 一般称为剩余变量,其实质与 x 3 x_3 x3 相同,故也有统称为松弛变量。松弛变量或剩余变量在目标函数中的系数均为 0。

(3) 变量 x j ≤ 0 x_j \leq 0 xj0。令 x j ′ = − x j x_j' = - x_j xj=xj 即可。

(4) 取值无约束的变量。令 x j = x j ′ − x j ′ ′ x_j = x_j' - x_j'' xj=xjxj,其中, x j ′ ≥ 0 x_j' \geq 0 xj0 x j ′ ′ ≥ 0 x_j'' \geq 0 xj0

6. 基本概念

  • (可行解) 满足约束条件的解 x = ( x 1 , x 2 , … , x n ) T \bm{x} = (x_1, x_2, \dots, x_n)^\text{T} x=(x1,x2,,xn)T,称为线性规划问题的可行解。全部可行解的集合称为可行域。
  • (最优解) 使目标函数达到最大值的可行解称为最优解,对应的目标函数值称为最优值。
  • (基) A m × n ( n > m ) \bm{A}_{m \times n} (n > m) Am×n(n>m) 为约束方程组的系数矩阵,其秩为 m m m B m × m \bm{B}_{m \times m} Bm×m 是矩阵 A \bm{A} A 中的满秩子矩阵,则称 B \bm{B} B 是线性规划问题的一个基(基矩阵)。设
    B = ( a i j ) m × m = ( p 1 , p 2 , … , p m ) , \bm{B} = (a_{ij})_{m \times m} = (\bm{p}_1, \bm{p}_2, \dots, \bm{p}_m), B=(aij)m×m=(p1,p2,,pm)
    则称 B \bm{B} B 中的每一个列向量 p j ( j = 1 , 2 , … , m ) \bm{p}_j (j = 1, 2, \dots, m) pj(j=1,2,,m) 为基向量。与基向量 p j \bm{p}_j pj 对应的变量 x j x_j xj 称为基变量(basic variables),其他变量称为非基变量(nonbasic variables)。
  • (基解) 在约束方程组中,令非基变量 x m + 1 x_{m+1} xm+1 x m + 2 x_{m+2} xm+2 … \dots x n x_{n} xn 为 0,则称由约束方程确定的唯一解 x = ( x 1 , x 2 , … , x m , 0 , … , 0 ) T \bm{x} = (x_1, x_2, \dots, x_m, 0, \dots, 0)^\text{T} x=(x1,x2,,xm,0,,0)T 为线性规划问题的基解。
    基解中变量取非零值的个数不大于方程数 m m m,且其总数不超过 C n m C_{n}^{m} Cnm 个。
  • (基可行解) 满足约束条件的基解称为基可行解。
  • (可行基) 对应于基可行解的基称为可行基。
  • (退化基可行解与非退化基可行解) 称含零值基变量的基可行解为退化基可行解,对应的基为退化可行基。称基变量都不为 0 的基可行解为非退化基可行解,对应的基为非退化可行基。
    由此可知,退化基可行解中的非零分量一定小于 m m m,非退化基可行解中非零分量一定等于 m m m。若有关线性规划问题的所有基可行解都是非退化基可行解,则该问题为非退化线性规划问题;否则,称为退化线性规划问题。


写出 1 中线性规划的标准形式,以及其基、基变量、基解、基可行解和可行基。

:显然,标准形式为
max ⁡ z = 3 x 1 + 5 x 2 + 0 x 3 + 0 x 4 + 0 x 5 s.t. { x 1 + x 3 = 4 , 2 x 2 + x 4 = 12 , 3 x 1 + 2 x 2 + x 5 = 18 , x j ≥ 0 ( j = 1 , 2 , … , 5 ) . \begin{aligned} \max &z = 3x_1 + 5x_2 + 0x_3 + 0x_4 + 0x_5 \\ &\text{s.t.} \begin{cases} x_1 + x_3 = 4, \\ 2x_2 + x_4 = 12, \\ 3x_1 + 2x_2 + x_5 = 18, \\ x_j \geq 0 \qquad(j = 1, 2, \dots, 5). \end{cases} \end{aligned} maxz=3x1+5x2+0x3+0x4+0x5s.t.x1+x3=4,2x2+x4=12,3x1+2x2+x5=18,xj0(j=1,2,,5).

由此,可写出约束方程组的系数矩阵:
A = [ 1 0 1 0 0 0 2 0 1 0 3 2 0 0 1 ] \bm{A} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \\ \end{bmatrix} A=103022100010001
矩阵 A \bm{A} A 的秩不大于 3,而
B = ( p 3 , p 4 , p 5 ) = [ 1 0 0 0 1 0 0 0 1 ] \bm{B} = (\bm{p}_3, \bm{p}_{4}, \bm{p}_5) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} B=(p3,p4,p5)=100010001
是一个 3 × 3 3 \times 3 3×3 的满秩矩阵,故 B = ( p 3 , p 4 , p 5 ) \bm{B} = (\bm{p}_3, \bm{p}_4, \bm{p}_5) B=(p3,p4,p5) 是一个基,对应的变量 x 3 x_3 x3 x 4 x_4 x4 x 5 x_5 x5 是基变量, x 1 x_1 x1 x 2 x_2 x2 是非基变量。令 x 1 = x 2 = 0 x_1 = x_2 = 0 x1=x2=0,解得 x 3 = 4 x_3 = 4 x3=4 x 4 = 12 x_4 = 12 x4=12 x 5 = 18 x_5 = 18 x5=18,则 x = ( 0 , 0 , 4 , 12 , 18 ) T \bm{x} = (0, 0, 4, 12, 18)^\text{T} x=(0,0,4,12,18)T 是一个基解。因该基解中所有变量取值为非负,故又是基可行解,对应的基 B = ( p 3 , p 4 , p 5 ) \bm{B} = (\bm{p}_3, \bm{p}_4, \bm{p}_5) B=(p3,p4,p5) 是一个可行基。

参考

《运筹学》(第四版),徐玖平,胡知能 编著,第 1 章 线性规划

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值