案例 1 — 拣配过程
让我们以物品拣选的各个步骤为例
拣货步骤
检查下一个商品的位置和数量
转到该位置并检查是否存在该商品
如果商品存在(订购数量),请选择它并移至下一个商品位置
如果订购的商品不存在,请寻找 1-2 个的替代商品
如果替代品存在并且很好,则拣选一个并移至下一个商品位置
如果替代品不可用、不合适或不适合放入容器,选择看上去与订购商品接近的商品,或不选任何商品,然后继续进行下一个商品的挑拣
拣货步骤可视化

订单/物品交付后,客户可以选择接受还是拒绝。拒绝可能由于各种原因而发生,即
损坏的物品
对客户来说为不适合的替代品
如上图所示,一个商品可能会处于 3 种可能的状态
客户接受
客户拒绝
没有商品选择(零选择)
业务指标
基于此过程,我们可以回答诸如以下的问题吗?
每天被客户手动拣选并被客户接受的总拣选物品的百分比是多少?
当客户的替代品缺货时,客户接受的商品百分比是多少?
对于特定的项目类别(例如Colas),当不适合容器的替换商品被拒绝的百分比是多少?
由于原商品不可用而被剔除的商品的百分比是多少?
如果可以得到此类问题的答案,可以使企业识别导致接受度降低,零选择率较高的物品/物品类别。为实现此目的,我们提出了一种状态转换模型,该模型基于可用数据来获取状态转换的概率。
模型
商品挑拣的过程非常适合于马尔可夫链模型。在选择过程中过渡到下一个状态仅取决于当前状态,而不取决于过去的状态,这使其可以表示为马尔可夫链。

缩写过程中的各个状态为缩写为:
订单商品找到(IF)
订单商品未找到(INF)
选择替代商品 1(排名最高/最相关)(SUB1)
选择替代商品 2(排名稍低)(SUB2)
替代产品缺货(OOS)
替换商品不合适(BAD)
替代商品无法放在容器中(TOTE)
替代商品不在指定位置(LOC)
替代商品手动拣配(MP)
客户接受(CA)
客户拒绝(CR)
零选择(NP)
转移概率是经验概率。即基于历史经验。
还要注意蓝色状态(CA,CR,NP)。这些状态的自转移概率为 1.0。显然,这意味着当拣配商品进入这些状态中的任何状态时,没有任何可能性以非零的概率再走出。
在马尔可夫链模型中,此类状态称为吸收状态,上述链称为吸收马尔可夫链,因为每个过渡非终端状态最终都有可能落入3个吸收状态之一。
关于 absorbing markov chains 的基础理论:https://www.cnblogs.com/guolei/p/3504931.html
公式
现在我们已经定义了状态和转移概率,让我们将其表示为转移矩阵 T

蓝色的列代表开始状态,绿色的列代表结束状态。
每一行的总和为1,表示此矩阵是右随机矩阵。
最后 3 行只有 1 个值 1,表明这些是吸收状态的自转移。
以上的转移矩阵 T 可以改为转移态 t 和吸收态 a: