2025版最新大模型微调方法(非常详细)零基础入门到精通,收藏这篇就够了

随着大模型技术的快速发展,大模型应用已经拓展到企业的研发应用、生产制造、经营管理等诸多环节,金融、制造、教育、交通等行业纷纷在探索大模型的落地场景。头部企业通过海量数据预训练构建超大参数规模的基座模型,大部分企业正在积极探索微调训练技术,使大模型更加适用于特定领域的业务应用。大模型训练平台作为支撑大模型应用落地的工程底座,已经成为产业积极探索和布局的重要阵地。在大模型训练过程中,如何构建微调语料库、选择微调方法、衡量训练效果,提升训练效果;如何通过计算优化、分布式优化、收敛性优化,提升训练效率;如何通过低代码能力、可视化能力、快速对接能力,提升训练易用性,都是大模型在训练开发过程中的难点。

人工智能产业发展联盟AI Infra工作组高度关注大模型训练微调平台技术发展联合五十余家工作组成员单位共同编制了《大模型训练平台技术要求》技术规范。该技术规范聚焦大模型平台训练过程的功能、性能要求,结合训练效率、稳定性和易用性等产业需求规范技术规范,帮助企业提升大模型训练效果,降低大模型训练成本,推动大模型技术更广泛的应用落地。

2025年1月8日,“大模型工程化成果发布会”在京召开,会上中国信息通信研究院人工智能研究所平台与工程化部工程师刘星辰发布了《大模型训练平台技术要求》解读。

一、面向对象

本技术规范为大模型训练平台的平台供给方和应用方提供,能够帮助平台提供方提高大模型平台的开发和交付过程,提高大模型平台在训练环节中的功能和性能;为平台应用方提供产品选型参考,提供能够衡量大模型平台产品能力的技术规范依据。

二、大模型训练平台技术规范内容

大模型训练平台技术规范系统梳理了大模型训练全流程的功能要求和性能指标,面向微调、预训练场景,全面提升大模型训练效率、稳定性和易用性。该评估项主要包括四个能力域,分别为“训练准备”、“模型训练”、“训练评估”和“AI资产管理”,共78个能力项,其中基础功能29项,高级功能49项,各能力域涉及以下核心条目。

(一)

训练准备

1.数据配置:包括数据高效预处理、数据分割、数据加载提效等能力。

2.模型选型:包括适配或预置基座模型、基座模型可视化、商用基座模型的对接管理、模型选型评估、选型推荐等能力。

3.模型开发配置:包括分布式训练、深度学习框架、训练超参数设置、词表管理、多模态编码、内置编程语言、开发工具等能力。

(二)

模型训练

功能要求:

1.预训练:包括分布式策略、训练中运维可观测、数据加速、超参数动态调整、预训练策略等能力。

2.微调:包括主流微调方法、导入规模数据集、超参数调整、显存优化技术等能力。

3.训练加速技术:包括计算加速技术、训练优化工具、梯度剪裁、正则化等能力。

4.训练稳定性技术:包括断点续训、容错机制、训练资源、异常情况预警、训练任务迁移等能力。

5.训练易用性技术:包括界面化开发管理、封装组件库、效果可视化监控、自动化工具、流程向导等能力。

性能要求:

1.训练效率:包括评估模型算力利用率(MFU)、硬件算力利用率(HFU)、线性加速比、平均吞吐等指标。

训练稳定性:包括故障恢复时长、有效训练时长占比、连续无故障时长、日均故障次数等指标。

(三)

训练评估

模型评估:包括模型准确性评估、模型基础效果评估、基于业务场景人工、模型评估结果可视化、多模型对比能力、模型稳定性评估、模型可解释性评估等能力。

(四)

AI资产管理

1.数据管理:包括数据集管理、数据集存储、数据集版本控制、数据集访问控制、数据集安全增强、数据调度能力、数据可视化、数据访问和检索及可视化等能力。

2.模型管理:应支持模型管理、模型版本控制、模型访问控制、模型监控与审计、模型血缘关系等能力。

人工智能产业发展联盟AI Infra工作组将致力于推动人工智能领域的高质量发展,通过技术研究、技术规范编制、政策研究等工作,促进供需对接和应用落地,与各方一道共同推动人工智能产业高质量发展。

下面给大家分享一份2025最新版的大模型学习路线,帮助新人小白更系统、更快速的学习大模型!
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享**

一、2025最新大模型学习路线

一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

L1级别:AI大模型时代的华丽登场

L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。

L2级别:AI大模型RAG应用开发工程

L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3级别:大模型Agent应用架构进阶实践

L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。

L4级别:大模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。

二、大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

三、大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

四、大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

五、大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

### 大模型校招面试问题与准备技巧 #### 1. 面试中的大模型核心知识点 在涉及大模型的校招面试中,常见的考察方向集中在以下几个方面: - **位置编码的作用**:解释为什么需要引入位置编码以及其具体功能[^1]。 - **实现细节**:描述如何通过正弦/余弦函数构建固定的位置编码矩阵,并说明动态位置编码的设计思路。 - **优缺点分析**:讨论基于绝对位置编码和相对位置编码各自的适用场景及局限性。 对于这些理论基础部分的回答应当条理清晰并辅以实际案例支持。例如,在讲解Transformer架构下为何采用特定形式的位置嵌入时,可以通过对比RNN系列模型来突出无序输入序列处理上的创新之处。 #### 2. 技术能力展现策略 除了掌握上述基础知识外,还需要注重实践经验和项目经历的呈现方式。以下是几个有效的方法论: - 展现解决真实业务痛点的能力:如果参与过利用BERT、GPT或其他预训练语言模型完成文本分类、情感分析等任务,则应着重强调数据预处理流程优化、微调参数选取依据等内容。 - 结合最新研究成果阐述观点:比如提及近期关于高效稀疏注意力机制的研究进展或者轻量化本的大规模神经网络压缩方案。 另外值得注意的是,阿里巴巴作为一家高度重视技术创新的企业,在评估候选人技术水平的同时也会关注跨学科综合运用潜力。因此熟悉诸如强化学习框架下的对话系统设计原则亦或是联邦学习环境里的隐私保护措施等相关领域知识同样有助于提升竞争力[^2]。 #### 3. 学习路径推荐 针对希望深入理解乃至精通AI大模型的同学来说,可以从以下几类资源入手进行系统化学习: - 官方文档阅读:官方发布的指南往往是最权威的第一手材料; - 开源社区贡献:积极参与GitHub上热门项目的开发维护工作不仅能积累宝贵经验还能扩大人脉圈层; - 参加线上课程培训:选择口碑较好的平台接受专业化指导加快成长速度; 特别值得一提的是有这样一份涵盖了从零起步直至独立操作整个工程链路各个环节所需技能点的学习计划可供参考——它按照循序渐进的原则安排了初学者入门阶段必修科目清单以及高级工程师进一步探索前沿课题的方向指引[^3][^4]。 ```python # 示例代码片段用于演示如何加载预训练好的transformer模型 from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese") model = AutoModelForSequenceClassification.from_pretrained("textattack/bert-base-uncased-imdb") def predict_sentiment(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) outputs = model(**inputs) logits = outputs.logits predicted_class_id = logits.argmax().item() sentiment_labels = ["negative","positive"] return sentiment_labels[predicted_class_id] sample_text = "这部电影真的太棒了!" print(predict_sentiment(sample_text)) ``` 以上实例展示了怎样快速搭建起一个简单的中文影评情绪判断工具原型,这对于初次接触NLP应用开发的新手而言是一个不错的起点。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值