pandas的dataframe如何更改数据类型?

pandas的dataframe数据类型转换

在使用pandas库进行数据分析时,有时候会需要将object类型转换成数值类型(float,int),那么如何做呢?

主要有以下三种方法:创建时指定类型,df.astype强制类型转换,以及使用pd.to_numeric() 转换成适当数值类型。

一,创建时指定类型

import numpy as np 
import pandas as pd 

dfx = pd.DataFrame([["11",1.2,3],['22',4.8,5]],
                   columns = list('abc'),
                   dtype = object)
dfx.dtypes

 

二,使用df.astype()强制类型转换

#强制类型转换
dfx[['a','b','c']] = dfx[['a','b','c']].astype('float32')
dfx.dtypes 

 

,使用pd.to_numeric() 转换成适当数值类型

import pandas as pd 
dfy = pd.DataFrame([["11",1.2,3],['22',4.8,'?']],
                   columns = list('abc'),
                   dtype = object)

# 将某列转换成数值类型,  pd.to_numeric只能作用到单列
dfy['a'] =  pd.to_numeric(dfy['a'])

# 利用apply将它作用到整个dataframe,遇到错误时候忽略,不予转换该列
dfy1 = dfy.apply(pd.to_numeric, errors = 'ignore')
print(dfy1.dtypes)

# 遇到错误时候转换成nan
dfy2 = dfy.apply(pd.to_numeric, errors = 'coerce')
print(dfy2.dtypes)

# 遇到错误时候报错
dfy3 = dfy.apply(pd.to_numeric, errors = 'raise')

 

 

对于金融分析师和投资者来说,解析巴菲特的13F持仓文件是一项基础且重要的技能。13F文件是美国证券交易委员会(SEC)要求机构投资者必须公开的投资组合信息报告,而伯克希尔哈撒韦公司的13F报告尤其引人注目。Python作为一种强大的数据处理工具,能够有效地帮助我们解析和分析这些数据。 参考资源链接:[Python实战:解析巴菲特13F持仓数据并转换为DataFrame](https://wenku.csdn.net/doc/3mb0a45aaz?spm=1055.2569.3001.10343) 首先,需要了解13F文件通常以XML格式呈现,其中包含嵌套的表格数据。要在Python中解析这种结构,推荐使用BeautifulSoup库来处理复杂的XML结构。接着,可以利用pandas库来构建和操作DataFrame,这是进行数据分析和处理的关键步骤。 具体操作步骤如下: 1. 使用requests库或直接从SEC网站下载13F文件的XML格式数据。 2. 导入BeautifulSoup库和pandas库,创建BeautifulSoup对象来解析XML数据。 3. 遍历XML文档的节点,定位到嵌套表格数据的部分。由于这些数据可能嵌套在多个层级中,需要仔细地识别并提取需要的信息。 4. 将提取的数据存储到字典或列表中,这些数据结构可以被pandas轻松地转换为DataFrame。 5. 使用pandasDataFrame构造函数创建数据框架,然后将数据填充到DataFrame中。 6. 对DataFrame进行清洗和数据类型转换,为后续的数据分析工作做好准备。 在此过程中,可能会遇到数据类型不一致、缺失值处理、以及数据合并等问题,这些都可以通过pandas提供的丰富功能来解决。 掌握了这些技术之后,你可以轻松地对巴菲特的持仓数据进行分析,甚至可以进行更复杂的操作,如计算特定时间段内的收益变化、投资组合的分散度、以及股票的相关性分析等。这不仅能够加深对巴菲特投资策略的理解,还能够提升数据分析的实际应用能力。如果希望进一步深入学习,推荐查看《Python实战:解析巴菲特13F持仓数据并转换为DataFrame》这篇文档,其中详细介绍了相关技术和实战步骤,是学习解析13F文件的宝贵资料。 参考资源链接:[Python实战:解析巴菲特13F持仓数据并转换为DataFrame](https://wenku.csdn.net/doc/3mb0a45aaz?spm=1055.2569.3001.10343)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值