Pandas—dataframe数据分析

一、dataframe读取数据文件

导包:import pandas as pd

格式:pd对象.read_数据格式(路径) 

# 例如:
pd.read_csv('data/movie.csv')

import pandas as pd
data=pd.read_csv('data/test.tsv',sep='\t')
data_fm=data.head()

数据格式一般有以下几种

#cvs:文本数据文件
#html:html数据文件
#pickle:Python特有文件
#json:json数据文件
#excel:excel类型的数据文件
csv_data=pd.read_csv('output/test.tsv',sep='\t')
html_data=pd.read_html('output/test.html')
pick_data=pd.read_pickle('output/test.pickle')
json_data=pd.read_json('output/test.json')
excel_data=pd.read_excel('output/test.xlsx')

其它四个读取的数据文件对象都是dataframe类型,可以直接使用dataframe的属性和方法,而需要注意的是读取html格式的数据文件类型是列表(list),所以它不能直接使用dataframe的属性和方法。如下:

二、dataframe对象保存数据到文件

import pandas as pd
data=pd.read_csv('data/test.tsv',sep='\t')#读取数据文件
data_fm=data.head()#获取数据文件的前五行
data_fm.to_pickle('output/test.pickle')#将data_fm对象保存为pickle类型的文件
data_fm.to_excel('output/test.xlsx')#将data_fm对象保存为excel类型的文件
data_fm.to_csv('output/test.tsv',index=False,sep='\t')#将data_fm对象保存为csv类型的文件
data_fm.to_json('output/test.json')#将data_fm对象保存为json类型的文件
data_fm.to_html('output/test.html')#将data_fm对象保存为html类型的文件

其中设置index=False可以取消索引保存,即保存的文件不包含索引,值得注意的是,如果是自己设置了索引名,请重置索引再保存(reset_index()),而sep参数在保存.tsv文件是常用,可以让保存的数据不以逗号隔开,而是以空格隔开

加了sep='\t':

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值