在这个例子中,我们将创建一个聊天机器人,帮助用户生成提示。它将首先从用户那里收集需求,然后生成提示(并根据用户输入对其进行细化)。这些被分为两个独立的状态,LLM决定何时在它们之间转换。系统的图形表示可以在下面找到。
收集信息
首先,让我们定义图中收集用户需求的部分。这将是一个带有特定系统消息的LLM调用。它将可以访问一个工具,当它准备好生成提示时可以调用该工具。
from typing import Listfrom langchain_core.messages import SystemMessagefrom langchain_openai import ChatOpenAI
from pydantic import BaseModel
模型我们使用qwen2.5 目前刚开源,基于ollama调用
template = """你的工作是从用户那里获取他们想要创建哪种类型的提示模板的信息。
您应该从他们那里获得以下信息:
-提示的目的是什么-将向提示模板传递哪些变量-输出不应该做什么的任何限制-输出必须遵守的任何要求
如果你无法辨别这些信息,请他们澄清!不要试图疯狂猜测。
在您能够辨别所有信息后,调用相关工具。
"""
def get_messages_info(messages): return [SystemMessage(content=template)] + messages
class PromptInstructions(BaseModel): """关于如何提示LLM的说明prompt""" objective: str variables: List[str] constrains:List[str] requirements: List[str]
llm = ChatOpenAI(model="qwen2.5", openai_api_key="ollama", openai_api_base="http://localhost:11434/v1/")llm_with_tool = llm.bind_tools([PromptInstructions])# 根据用户的输入 调用 需要的工具def info_chain(state): messages = get_messages_info(state['messages']) response = llm_with_tool.invoke(messages) return {"messages":[response]}
生成提示
我们现在设置将生成提示的状态。这将需要一个单独的系统消息,以及一个在工具调用之前过滤掉所有消息的函数(因为此时之前的状态决定是时候生成提示了
from langchain_core.messages import AIMessage,HumanMessage, ToolMessage
prompt_system = """根据以下要求,编写一个好的提示模板:{reqs}"""
def get_prompt_messages(messages:list): tool_call = None other_msgs = [] for m in messages: if isinstance(m, AIMessage) and m.tool_calls: tool_call = m.tool_calls[0]['args'] elif isinstance(m, ToolMessage): continue elif tool_call is not None: other_msgs.append(m) return [SystemMessage(content=prompt_system.format(reqs=tool_call))] + other_msgs
def prompt_gen_chain(state): messages = get_prompt_messages(state["messages"]) response = llm.invoke(messages) return {"messages":[response]}
定义状态逻辑
这是聊天机器人所处状态的逻辑。如果最后一条消息是工具调用,那么我们处于“提示创建者”(prompt)应该响应的状态。否则,如果最后一条消息不是HumanMessage,那么我们知道人类应该下一条响应,所以我们处于END状态。如果最后一条消息是HumanMessage,那么如果之前有工具调用,我们处于提示状态。否则,我们处于“信息收集”(info)状态。
from typing import Literal
from langgraph.graph import END
# 定义一个函数,用于获取当前状态def get_state(state)-> Literal["add_tool_message","info","__end__"]: messages = state["messages"] if isinstance(messages[-1],AIMessage) and messages[-1].tool_calls: return "add_tool_message" elif not isinstance(messages[-1], HumanMessage): return END return "info"
创建图形
我们现在可以创建图形。我们将使用SqliteSaver来保存对话历史记录。
# Create the graphfrom langgraph.checkpoint.memory import MemorySaverfrom langgraph.graph import StateGraph,STARTfrom langgraph.graph.message import add_messagesfrom typing import Annotatedfrom typing_extensions import TypedDict
class State(TypedDict): messages: Annotated[list, add_messages]
memory = MemorySaver()workflow = StateGraph(State)workflow.add_node("info",info_chain)workflow.add_node("prompt",prompt_gen_chain)
# 工具调用用来做提示词生成@workflow.add_nodedef add_tool_message(state:State): return { "messages":[ ToolMessage( content="Prompt generated!", tool_call_id= state["messages"][-1].tool_calls[0]['id'] ) ] }
workflow.add_edge(START,"info")workflow.add_conditional_edges("info",get_state)workflow.add_edge("add_tool_message","prompt")workflow.add_edge("prompt",END)graph = workflow.compile(checkpointer=memory)
打印图
执行图
import uuid
config = {"configurable":{"thread_id":str(uuid.uuid4())}}
while True: user = input("User (q/Q to quit): ") print(f"User (q/Q to quit): {user}") if user in {"q", "Q"}: print("AI: Byebye") break output = None for output in graph.stream( {"messages":[HumanMessage(content=user)]}, config=config, stream_mode="updates" ): last_message = next(iter(output.values()))["messages"][-1] last_message.pretty_print() if output and "prompt" in output: print("Done!")
``**测试效果**
使用程序,需要输入4个条件
- 提示的目的是什么?- 将向提示模板传递哪些变量?(例如,在这个例子中提到的数组)- 输出不应该做什么的任何限制。- 输出必须遵守的任何要求。
首先测试一个 排序算法
1、写一个快速排序算法 2、“1,3,2,5“ 3、no 4、no
测试一个 ,写故事的
当你输入不完整时,他会自动要求你继续输入,还是很不错的
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。