Qwen 开放了众多 API 接口,新用户注册后会有一定的免费额度。如果赠送的额度也用完了,还想继续白嫖体验的话,有啥好办法吗?
本文就跟大家分享一个在GitHub上的一款开源项目 - qwen-free-api
。项目可以通过“阅读原文”访问。
项目简介
qwen-free-api
顾名思义,就是免费使用qwen API嘛,它具有以下特性:
-
高速流式输出:实时生成文本,满足各种创作需求。
-
联网搜索:整合搜索引擎,足不出户获取海量信息。
-
长文档解读:轻松理解长篇大论,快速把握文章要点。
-
图像解析:从图像中提取信息,洞察先机。
-
多轮对话:与模型进行自然流畅的对话,享受智能交互体验。
-
多路token支持:解除并发限制。
-
自动清理会话痕迹:保护我们的隐私安全。
-
零配置部署:无需繁琐配置,即可轻松使用。
目前支持与openai 兼容的 /v1/chat/completions 接口,可自行使用与openai或其他兼容的客户端接入接口,或者使用 dify 等线上服务接入使用。
同时,作者也声明,该项目纯粹研究交流学习性质,仅限自用。大家也是且用且珍惜,别用力过猛了。
项目展示
验明正身
文生图
图片理解
长文档解读
接入准备
进入通义千问的对话页面:https://tongyi.aliyun.com/qianwen/
然后按 F12 打开开发者工具,从 Application > Cookies 中
找到**login_tongyi_ticket
**的值,这将作为 Authorization 的 Bearer Token 值:
Authorization: Bearer TOKEN
其中的 TOKEN 用**login_tongyi_ticket
** 的值替换。
你可以通过提供多个账号的login_tongyi_ticket,并通过以下方式拼接,每次请求服务会从中挑选一个:
Authorization: Bearer TOKEN1,TOKEN2,TOKEN3
安装部署
项目支持多种部署方式,包括本地部署、docker/Render/Vercel/Zeabur 部署 等等。
docker部署
docker run -it -d --init --name qwen-free-api -p 8000:8000 -e TZ=Asia/Shanghai vinlic/qwen-free-api:latest
Docker-compose部署
version: '3' services: qwen-free-api: container_name: qwen-free-api image: vinlic/qwen-free-api:latest restart: always ports: - "8000:8000" environment: - TZ=Asia/Shanghai
本地部署
npm i #安装依赖 npm i -g pm2 安装PM2进行进程守护 npm run build #编译构建 pm2 start dist/index.js --name "qwen-free-api" #启动服务 pm2 logs qwen-free-api #查看服务实时日志 pm2 reload qwen-free-api #重启服务 pm2 stop qwen-free-api #停止服务
Qwen-Free-API仅供个人学习和研究使用,禁止用于商业目的。Qwen-Free-API的服务可能会受到限制,请酌情使用。
总的来说,Qwen-Free-API
是一个功能强大、易于使用的开源项目,可以帮助我们快速构建各种基于 Qwen 的应用。感兴趣的可以试试,但服务可能会受到限制,请酌情使用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。