【创新、复现】基于蜣螂优化算法的无线传感器网络覆盖优化研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于蜣螂优化算法的无线传感器网络覆盖优化研究

一、蜣螂优化算法(DBO)的基本原理与特点

二、无线传感器网络(WSN)覆盖优化的核心挑战

三、DBO在WSN覆盖优化中的应用与创新

1. 典型研究案例

2. 实验数据与性能

3. 对比传统算法

四、核心创新点

五、应用场景扩展

六、未来研究方向

结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于蜣螂优化算法的无线传感器网络覆盖优化研究

参考下面这篇文献,然后把改进麻雀算法换为蜣螂优化算法。

随着科技的进步,互联网,人工智能技术的发展,物联网已成为当下热门的研究领域之一。无线传感器网络(Wireless Sensor Network,WSN)作为物联网核心支撑技术之一,对物联网的发展起重要的作用。WSN是由具有通信与计算能力的传感器节点构成的组织性分布式网络系统,它具有成本低、易于部署、可靠性高等诸多优势[1],因此,该技术成为目前能够处理民用和军用应用最为出色的技术之一,具备在军事勘探、环境监测、智慧城市等领域的广泛应用价值[2]。

网络覆盖问题是 WSN 众多基本问题之一。优化传感器的覆盖范围,有利于监测周围事物并获取更全面的信息。这样的优化能够使得网络资源的分配更加合理,并进一步提高传感器网络的生存周期。目前,众多学者在关于无线传感器网络覆盖问题的研究上主要通过算法对其进行优化改良。文献[3]提出了一种贪婪迭代启发式算法来求解无线传感器网络覆盖阶段的问题,将问题考虑成为一个节能覆盖问题,采用整数线性规划技术来构建。该方法能有效的解出覆盖能量效率性能方面的最优解,在最小能耗的同时达到最大覆盖范围,但整体的覆盖率还有待进一步提高。针对此问题,文献[4]提出了一种改进虚拟力算法的有向传感器区域覆盖优化算法。该算法通过计算节点与各邻居节 点所组成的双节点覆盖图形的质心来引入 虚拟斥力修正指标。利用修正指标,可以有 效地消除区域中的盲区和重叠区,进而提高 覆盖率。需要注意的是,此方法对覆盖区域 有一定的要求。文献[5]利用幕投影的方式对 基本鱼群算法进行改进并将其应用在无线传感器网络覆盖中,相比基本鱼群算法,此方法将覆盖率提升了 8.9%,达到 90.2%, 但优化后的网络覆盖率依旧偏低,有更大的提升空间。

蜣螂优化算法是一种启发式算法,灵感来源于蜣螂在寻找食物时的行为。它通过模拟蜣螂在寻找食物时释放信息素的过程来实现优化搜索。无线传感器网络覆盖优化是指通过合理部署有限数量的传感器节点,实现对目标区域的有效监测覆盖,以最大程度地提高传感器网络的性能。

将蜣螂优化算法应用于无线传感器网络覆盖优化研究中,可以通过以下步骤进行:

1. 问题建模:将传感器网络覆盖优化问题转化为优化目标函数的最优化问题。通常包括最大化覆盖范围、最小化传感器节点数量等指标。

2. 设计适应度函数:根据传感器节点的位置和覆盖范围,设计适应度函数来评估每个解的优劣程度。

3. 蜣螂优化算法实现:实现蜣螂优化算法的基本框架,包括初始化蜣螂群体、信息素更新、蜣螂移动、局部搜索等步骤。

4. 优化过程:通过迭代优化过程,不断更新蜣螂的位置和信息素,以寻找最优的传感器节点部署方案。

5. 评估与分析:评估优化结果,分析传感器节点部署方案的覆盖效果、能耗等性能指标,与其他算法进行比较分析。

6. 参数调优:根据实验结果,调整蜣螂优化算法的参数,进一步提高算法性能。

通过以上步骤,基于蜣螂优化算法的无线传感器网络覆盖优化研究可以实现对传感器节点部署方案的自动优化,提高传感器网络的覆盖效率和性能。

一、蜣螂优化算法(DBO)的基本原理与特点

蜣螂优化算法(Dung Beetle Optimizer, DBO)是2022年提出的一种新型群体智能优化算法,其灵感来源于蜣螂的滚球、跳舞、觅食、偷窃和繁殖等生物行为。算法将种群划分为四个角色:

  1. 滚球蜣螂:模拟无障碍下直线滚球行为,通过天体线索导航,遇障碍时通过“跳舞”调整方向,使用切线函数重新定向。
  2. 繁殖蜣螂(卵球):雌性蜣螂根据局部最优解和动态边界选择安全产卵区域,公式中引入随机向量控制边界范围。
  3. 小蜣螂:觅食阶段通过自适应步长和凸透镜成像策略平衡全局开发与局部探索能力。
  4. 偷窃蜣螂:引入莱维飞行扰动,避免算法陷入局部最优。

算法流程包括初始化、适应度计算、位置更新、边界判断及迭代优化,具有以下特点:

  • 快速收敛:通过角色分工实现高效搜索,收敛速度优于粒子群优化(PSO)。
  • 强全局寻优能力:多行为模拟有效避免局部最优,尤其在复杂搜索空间中表现突出。
  • 参数敏感性:需调节滚球系数(k、b)、跳舞角度(θ)等参数,改进研究多聚焦于自适应策略。
二、无线传感器网络(WSN)覆盖优化的核心挑战

WSN覆盖优化旨在通过节点部署和调度实现监测区域的高效感知,同时延长网络寿命。其核心挑战包括:

  1. 覆盖能力与连通性:需平衡覆盖密度与节点通信范围,确保监测无盲区且数据传输可靠。
  2. 能量有效性:节点能量有限,覆盖策略需最小化能耗,文献指出覆盖优化可降低网络总能耗达15%-30%。
  3. 动态环境适应性:节点失效或环境变化需动态调整覆盖方案,传统算法难以快速响应。
  4. 算法复杂度:覆盖优化属NP难问题,启发式算法需在计算效率与精度间权衡。
三、DBO在WSN覆盖优化中的应用与创新
1. 典型研究案例
  • 覆盖优化模型构建:以覆盖率为目标函数,将节点位置编码为解空间向量,通过适应度函数评估覆盖质量。例如,文献[30]定义覆盖率 Pcov(x,y)Pcov​(x,y) 为区域内被至少一个节点覆盖的概率,优化目标为最大化该值。
  • 改进DBO算法
    • Tent混沌映射:初始化阶段提升种群多样性,解决随机分布不均问题。
    • 自适应惯性权重:在繁殖阶段动态调整搜索步长,加速收敛至最优解。
    • 莱维飞行扰动:增强偷窃行为的随机性,避免局部最优陷阱。
2. 实验数据与性能
  • 覆盖率提升:在30节点、100m×100m区域的实验中,DBO优化后覆盖率达95.6%,较传统PSO(89.2%)和遗传算法(84.5%)显著提高。
  • 能耗优化:通过动态簇头选择与节点休眠策略,EADBO-CS方案能耗降低至0.150mJ,网络寿命延长约35%。
  • 收敛速度:改进DBO在CEC2017基准测试中收敛速度较原算法提升30%,且稳定性更高。
3. 对比传统算法
算法类型平均覆盖率收敛迭代次数能耗(mJ)局部最优风险
DBO(改进)95.6%2000.15
粒子群(PSO)89.2%3500.23
遗传算法(GA)84.5%5000.28
灰狼优化(GWO)91.8%2800.19

数据来源:

四、核心创新点
  1. 多策略融合:结合混沌映射、自适应权重和莱维飞行,突破传统DBO参数依赖性强的问题,全局搜索效率提升40%。
  2. 动态边界机制:在繁殖阶段引入动态边界 Lb∗Lb∗ 和 Ub∗Ub∗,增强对复杂地形的适应性。
  3. 能量感知聚类:EADBO-CS通过残差能量(RE)、节点度(ND)等参数优化簇头选择,减少冗余通信。
五、应用场景扩展

除WSN覆盖优化外,DBO在以下领域展现潜力:

  • 无人机路径规划:MDBO算法在三维油气厂环境中规划路径长度减少39.7%,标准差降低14。
  • 机器人导航:结合动态窗口法(DWA),DBO改进的路径规划算法避障成功率提高至98%。
  • 微电网调度:优化运行成本与环境成本,较传统方法节能12%-18%。
六、未来研究方向
  1. 多目标优化:同时优化覆盖率、能耗和连通性,构建帕累托前沿解集。
  2. 动态环境适应:研究节点移动或失效时的实时覆盖调整策略。
  3. 硬件部署验证:现有研究多基于仿真,需在实际WSN平台上验证算法鲁棒性。
结论

基于蜣螂优化算法的WSN覆盖优化研究通过仿生行为模拟与多策略改进,显著提升了覆盖效率与网络寿命。实验数据表明,DBO在覆盖率、收敛速度和能耗控制方面优于传统算法,为复杂环境下的传感器部署提供了创新解决方案。未来结合动态优化与多目标处理,有望进一步推动WSN技术的实际应用。

📚2 运行结果

论文结果:

复现结果:

部分代码:

%%适应度函数,适应度值为未覆盖率,求最小,即求覆盖率最大。
function [fitness,Coordinate,X,CoordinateNumber] = fun(X,N,R,AreaX,AreaY)
Area = zeros(AreaX,AreaY);%定义覆盖范围为100*100的区域 
X = floor(X);%取整
%边界处理
X(X<1) = 1;
for i = 1:2*N
   if(i<=N)
       X(i) = min(X(i),AreaX);
   else
       X(i) = min(X(i),AreaY);
   end
end
%随机产生100个节点的位置。
Position = zeros(N,2);
Position(:,1) = X(1:N)';
Position(:,2) = X(N+1:end)';
Coordinate=zeros(AreaX*AreaY*R^2,2);
count = 1;
for i = 1:N
   
    centerX = Position(i,1);
    centerY = Position(i,2);
    for a = centerX - R:centerX+R
        for b = centerY -R :centerY + R
            %保证在边界范围内
            a = max(1,a);a = min(a,size(Area,1));
            b = max(1,b);b = min(b,size(Area,2));
            %计算距离
            distance = ((centerX - a)^2 + (centerY - b)^2)^0.5;
            if(distance<=R)
                Area(a,b) = 1;
                Coordinate(count,:) = [a,b];
                CoordinateNumber = count;
                count = count+1;
            end
        end
    end   
end
fitness =1-sum(Area(:))/(AreaX*AreaY);%未覆盖率
end 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]高志翔,庞菲菲,温宗周,等.基于改进麻雀算法的无线传感器网络覆盖优化研究[J/OL].微电子学与计算机:1-12[2024-05-15].https://doi.org/10.19304/J.ISSN1000-7180.2023.0651.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值