如果你真心想要入门大型语言模型(LLM),这篇指南将是一个很好的起点。但请记住,深入学习并精通这一领域,最终还是要靠你的不断学习和实践。
基本要求
首先,确保你具备以下基础:
-
开发语言:Python 是最常用的语言,而 C/C++ 也在性能要求较高时使用。
-
开发框架和工具库:熟悉如 Numpy、Pandas、Matplotlib 和 Seaborn、Scikit-learn、Pytorch、Tensorflow、Keras 和 Onnx 等工具,这些都是进行数据科学和机器学习项目的重要工具。
-
数学知识:掌握线性代数、微积分、概率论及凸优化等基本数学知识,是进行算法开发和模型训练的基础。
数学核心内容
-
线性代数:
-
理解向量、矩阵、特征值和特征向量。
-
熟练掌握矩阵乘法、行列式计算及特征值方程 Av=λv, 其中 A是矩阵,v是特征向量,入是特征值。
-
高数:
-
掌握微分和积分基础,包括极限、导数和积分的定义及计算。
-
理解基本的微积分定理,如积分和微分的关系。
-
概率:
-
熟悉概率公理、条件概率、贝叶斯定理。
-
理解随机变量、概率分布等基本概念。
-
凸优化:
-
了解凸集、凸函数的定义,以及梯度下降和拉格朗日乘数法。
-
掌握梯度下降的基本更新规则 xn+1=xn_−_α_∇_f(xn),其中 α 是学习率。
基本开发框架和工具库
-
Numpy:
-
用途:进行高效的数值计算。它提供了一个强大的N维数组对象和广泛的函数库,用于执行数组操作。
-
重要性:Numpy是几乎所有高级数据分析和机器学习库的底层依赖,包括Pandas和Tensorflow。
-
Pandas:
-
用途:数据处理和分析。Pandas提供了易于使用的数据结构和数据分析工具,特别是对于表格数据非常有效。
-
重要性:在数据预处理阶段,Pandas是不可或缺的,用于数据清洗、转换和数据探索。
-
Matplotlib and Seaborn:
-
Matplotlib:用于创建静态,动态,交互式的图形和数据可视化。
-
Seaborn:基于Matplotlib,提供了一种高级接口,更适合制作复杂的统计图表。
-
重要性:这些库帮助在模型训练前后对数据和结果进行可视化,从而更好地理解数据特征和模型表现。
-
Scikit-learn:
-
用途:包含广泛的简单和有效的工具用于数据挖掘和数据分析。这是一个为跨越数据挖掘和机器学习提供支持的库。
-
重要性:用于快速实现常见的算法,它的设计非常适合作为算法的快速原型开发工具。
-
Tensorflow/Keras:
-
Tensorflow:一个开源的软件库,用于进行高性能数值计算,通过数据流图提供了复杂的计算支持。
-
Keras:作为Tensorflow的一个高级接口,Keras使得创建和测试深度学习模型变得更简单。
-
重要性:这些框架用于构建和训练神经网络,特别是在大规模和复杂的网络结构中显示出其强大功能。
-
PyTorch:
-
用途:与Tensorflow类似,PyTorch提供了强大的GPU加速的张量计算以及构建深度学习网络的方便接口。
-
重要性:PyTorch特别在研究领域受到欢迎,由于其简单性和灵活性,使得实验和原型开发更为直观。
Transformer基础
做为 LLM 的基础模型,你要想入门,理解Transformer模型是入门LLM的关键!而 Transformer 的基本图像就是下面这样的:
Transformer的结构包括:
-
Attention机制:帮助模型在处理输入的不同部分时分配不同的重视程度。
-
多头注意力(Multi-head attention):允许模型在多个子空间并行处理信息。
推荐自己手写一个 Transformer 模型,至少要写一个 Attention 的结构。还要看懂下面这个图。你就能体会到一个至简的模型是怎么遵循 Scaling Law的,AGI 可能就在这个简单的重复与变大中了!
代码示例
以下是一个使用Python及其库来实现基础神经网络的例子,该示例覆盖了数据加载、模型定义、训练和测试的基本步骤,但使用的是更直观的Keras库,这是TensorFlow的高级接口。此示例使用了MNIST手写数字数据集,是机器学习中常用的入门级数据集。
简单的大模型编程示例
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to\_categorical
\# 数据加载
(train\_images, train\_labels), (test\_images, test\_labels) = mnist.load\_data()
\# 数据预处理
train\_images = train\_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
test\_images = test\_images.reshape((10000, 28, 28, 1)).astype('float32') / 255
train\_labels = to\_categorical(train\_labels)
test\_labels = to\_categorical(test\_labels)
\# 模型定义
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input\_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
\# 编译模型
model.compile(optimizer='adam',
loss='categorical\_crossentropy',
metrics=\['accuracy'\])
\# 模型训练
model.fit(train\_images, train\_labels, epochs=5, batch\_size=64)
\# 模型测试
test\_loss, test\_acc = model.evaluate(test\_images, test\_labels)
print(f"Test accuracy: {test\_acc\*100:.2f}%, Test loss: {test\_loss:.2f}")
注意是每一行
深入学习大语言模型
掌握大型语言模型(LLM)不仅仅是学习基础知识;随着技术快速进化,维持行业竞争力要求深入理解并应用高级技术。以下是针对不同技术阶段的详细介绍,这些技术从简单到复杂、从成本效率到高成本实施不等,每种技术都有其独特的应用场景和实践价值。
1. Prompt Engineering(Prompt 工程)
定义与应用:
Prompt Engineering 涉及为大型语言模型设计有效的输入(Prompts),以引导模型生成所需的输出。这个过程不仅需要精确表达问题或需求,而且要格式化输出以适应特定应用。
实施细节:
-
指令角色:定义模型应扮演的角色,如助手、顾问等。
-
精确表达:使用清晰、无歧义的语言来提高响应的相关性和准确性。
-
输出格式化:指定输出的结构,比如列表、段落或特定格式的数据。
实际应用:
通过迭代试验确定最有效的Prompt,实验可能包括不同的语言风格、结构变化及不同的细节级别,以达到最佳性能。
2. Retrieval-Augmented Generation (RAG)(RAG 技术(检索增强生成))
定义与功能:
RAG 通过结合检索器模型和生成器模型来提高回答的精确度和相关性。特别是在处理需要广泛背景知识的复杂查询时,RAG能通过检索相关信息并整合进生成过程中,极大地增强模型的输出质量。
关键组件:
-
检索器:负责从一个大规模的数据集中找到与输入Prompt相关的内容。
-
生成器:使用检索到的信息来生成连贯、准确的回答。
技术实现:
整合检索和生成过程,例如使用Elasticsearch作为检索后端,Transformer模型作为生成器,通过LangChain等工具桥接两者。
3. Fine-Tuning Techniques (微调技术)
优化策略:
在特定任务或数据集上调整已经预训练的模型参数,这一过程叫做Fine-Tuning。通过这种方式,可以使通用模型更好地适应特定应用,提高其效能和准确性。
方法论:
-
数据准备:根据任务需求准备或标注数据。
-
微调过程:在特定数据集上继续训练模型,通常使用较低的学习率以避免过拟合。
4. Training LLMs from Scratch (LLM从零开设训练)
开发自定义模型:
当预训练的模型不能满足特定需求时,可以从零开始训练自定义的大型语言模型。这需要大量的数据和计算资源,但提供了最高级别的自由度和定制潜力。
实施考量:
-
数据收集:构建覆盖广泛领域的大型数据集。
-
模型设计:设计适应具体任务的模型架构。
-
训练策略:配置高性能计算资源,如使用GPU集群进行模型训练。
5. Deployment and Optimization (LLM 部署及优化技术)
高效部署:
将训练好的模型部署到生产环境中,需要优化模型以减少资源消耗和提高响应速度,这包括模型量化、修剪和蒸馏等策略。
优化技术:
-
量化:减少模型使用的数据位数来降低内存需求和加速计算。
-
修剪:去除权重中的冗余或不重要的部分来减小模型大小。
-
蒸馏:训练一个小型模型来模仿大型模型的行为,以减少部署成本。
心理调整与学习策略调整
-
聚焦核心技术:
-
现象: AI信息海量且复杂,难以把握核心。
-
策略: 以大型模型如GPT为中心,构建框架思维,过滤并深入理解主导技术,这些技术形成了AI领域最广泛的共识和应用基础。
-
实例: 如学习Transformer架构,关注其在不同应用(如NLP,图像处理)中的变体和优化。
-
简化学习过程:
-
现象: 初学者面对的学习曲线可能显得陡峭。
-
策略: 通过实操(如编写简单的GPT使用案例)和系统化阅读(例如deeplearning.ai教程),快速掌握基础知识和应用。
-
实例: 在Colab上运行一个小型GPT模型,实现一个简单的聊天机器人。
-
优化日常使用习惯:
-
现象: 日常接触大量短期信息,如行业新闻或技术热点。
-
策略: 专注于长期技术累积和深度应用,减少对流行但非核心技术(如短期内高层人事变动)的关注。
-
实例: 而不是追踪OpenAI的高层变动,应更关注如何GPT技术的迭代对行业的长远影响。
通过上述策略和资源,你将能够高效地入门并精通大型语言模型开发,打下坚实的职业和技术基础。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。