别再浪费时间了!ChatGPT AI 提示这样写,效率立马翻倍!

AI 工具的吸引力在于,它们能帮助你更快、更轻松地完成工作。但如果你不知道如何给出明确的 AI 提示,可能就很难得到想要的结果。相反,你可能会浪费一整个上午,反复调整指示,希望在第69次尝试时能成功,但事实也许并非如此。

我花了很多时间研究和调整各种AI工具的提示,这些工具从AI聊天机器人、图像生成器,到大型语言模型(LLM)和多模态模型(LMM)都有涉及。以下是我总结的一些撰写有效 AI 提示的技巧,希望能对你有所帮助!

如何编写有效的 AI 提示来生成文本

如果你正在使用 AI 生成文本(无论是编写文案、总结冗长的研究论文,还是做数据分析),可以参考以下提示来编写清晰的AI提示,以便更快获得想要的结果。

1. 告诉它你想要的写作风格

如果你希望AI生成的文本看起来更像人类写作,就需要在提示中详细说明你想要的语气、语调、风格和结构。

例如:“写一份关于如何提升员工满意度的方案。请按照清晰的逻辑顺序说明,先分析当前问题,然后提出具体的解决方案。”

如果某位作家的写作风格与你想要的内容相符,例如你喜欢的某位作家的写作风格,你可以直接使用“以(作家名)的风格”这个短语,并在后面附上你的指令。

2. 预先提供有用信息

假设你想让 AI 工具为你起草一份给合作伙伴的项目进度汇报。AI 并不了解这个项目的具体情况,所以你需要提供必要的信息,便于它生成合适的内容。例如:

项目背景简介:[粘贴项目背景简介]

作为[你的姓名和公司/行业],请为[合作伙伴姓名]起草一份200字的项目进度汇报,重点突出目前的进展和下一步计划。

3. 提供示例

提供你正在寻找的输出类型的示例,有助于引导人工智能提供类似的结果。

举例说明你需要什么样的输出,有助于引导人工智能提供类似的输出结果。例如,如果你想让AI格式化一段数据,你可以这样输入:

例子:
输入:2024-06-02
添加 3 天并将以下时间戳转换为 MMM/DD/YYYY 格式
输出:2024 年 6 月 4 日
输入:2024-07-11
输出:

你还可以通过向AI展示不满意的示例,告诉它应该避免生成类似的结果。

4. 提供反馈

目前,AI 工具还不能读取你的面部表情。所以,它无法通过你皱眉头来判断之前的回复是否达到了你的预期效果。你需要明确地告诉人工智能,它的回答是否符合你的要求,还是完全偏离了目标。

例如,我上传了电影《心灵捕手》(Good Will Hunting)的截屏,要求 ChatGPT 告诉我照片中发生了什么。

ChatGPT的回答虽然技术上是正确的,但对我来说过于模糊。于是,我给它提供了反馈,并补充了一段对图片中场景的简短描述。接着,ChatGPT根据我的反馈,生成了更具体的描述,对场景的呈现更加到位。

你不必总是通过文本提示来提供反馈。有些人工智能聊天机器人还提供了快速操作按钮,你可以通过点击按钮来反馈。例如,Gemini允许你对回复表示喜欢或不喜欢,而ChatGPT只允许你表达不喜欢某个回复。

5. 以现有提示为基础

AI 聊天机器人和写作生成器能够 "记住 "以前的 AI 提示和对话。这意味着你只需输入一次指令,它就会记住你在整个对话中的指示。

有些人工智能聊天机器人(如ChatGPT)具备记忆功能,可以自动从以前的对话中获取你的偏好和细节。而其他工具,如Jasper,则需要你明确地向它提供这些信息。

6. 指定长度

在编写人工智能提示时,最好提供你期望回复的字数或可接受的长度范围。

例如,如果你需要一个100字的摘要,可以输入“写一篇100到250字的文章摘要”。提供一个范围可以让人工智能灵活生成符合你要求的内容。当然,你也可以使用“短”或“长”等相对模糊的词语。

7. 定义输出格式

如果你使用的 AI 模型能够输出多种格式,请在提示中明确指出输入的内容以及你期望的输出格式。

例如,ChatGPT 能够输出 Python 和 HTML 等代码语言,以及图表和CSV等可视化样式。这意味着你可以上传一个CSV格式的调查数据文件,然后让ChatGPT将同样的数据以条形图的形式输出。

8. 让它逐步思考或逆向思考

对于更复杂的任务,例如数学问题或需要推理的问题,在 AI 提示中加入特定短语会很有帮助。下面是几个例子。

“让我们逐步思考”。这句话可以促使人工智能按照逻辑步骤来解决问题,尤其适用于数学问题。

“逆向思维…” 如果人工智能反复得出不准确的结论,这个短语可能会有所帮助。

“为[年龄]解释这个话题”。明确定义受众及其对话题的理解程度,有助于聊天机器人以适合目标受众的方式做出回应。

9. 赋予角色

为人工智能指定一个角色有助于构建机器人的知识。这样,它就会知道自己知道什么,不知道什么。

赋予它角色的一个简单方法是在你的 AI 提示中加入这个短语:“作为 [插入职业/角色]”,然后添加你的指令或请求。

10. 让 AI 生成提示

你还可以将 AI 作为头脑风暴工具,利用它的知识库和模式识别能力,生成一些你可能没有想到的提示创意。

为此,请尽量清晰、具体地提出你的请求,并详细说明你的需求。例如,当手机出现错误时,你希望GPT帮助解决错误信息,可以这样输入:

“请你创建一个提示来帮助我找出手机开不了机的问题。我的需求包括:了解具体的问题是什么、可能导致问题的原因、问题发生的时间或条件、以及建议的解决方法。我需要这些信息以清单形式呈现。”

人工智能会根据这些要求生成一个提示,然后你就可以在 AI 工具上使用了。

如何编写有效的 AI 艺术创作提示

虽然 AI 聊天机器人和写作生成器即使使用一般的提示也能提供相当不错的回复,但如果涉及到艺术创作,你可能需要更具体的提示,以确保生成的作品符合你的期望。

这些提示通常包括三个基本元素:图片内容或主题、动作、状态和情绪描述;[艺术形式、风格和艺术家参考;其他设置,如灯光、颜色和取景。

1. 使用逗号

在提示中使用逗号分隔每个元素,有助于人工智能模型更清楚地理解你的要求,同时也让你更容易记住这些要求。例如:“一个孩子画的恐龙插图,插图可爱又感人。”

2. 输入简洁的提示

尽管 AI 艺术提示的长度没有硬性规定,但根据我的经验,Midjourney在使用60个字的提示时效果较好,而Stable Diffusion在提示较短时效果更佳。因此,具体长度可以根据所用工具的特性来调整。

3. 使用针对具体语境的语言

如果你希望 AI 艺术生成器生成更可预测的结果,请在提示中加入生动的细节和具体的描述。如果你希望人工智能发挥更多创造力,可以使用诗意或抽象的措辞。你也可以根据实际需求,灵活组合这些方法,以达到最理想的效果。

4. 包含风格词

风格词可以帮助人工智能理解所需的美感,将你的输出从一般转化为惊人。以下是一些常见的人工智能艺术风格词汇的概述。

媒介:指的是传统艺术的表现形式及其特点,例如模板、水彩、涂鸦和木炭等。

材质:这是增强AI图像效果的有趣方式之一。你可以选择传统材料如瓷器或木头,也可以大胆尝试不常见的材料如气泡或光线。在提示中添加“由[材料]制成”这样的短语也很有帮助,这样人工智能就能将其识别为一种材料,而不是图像的一个组成部分。

灯光:通过调整光线和阴影,你可以在AI生成的图像中营造出特定的氛围。例如,自然光、摄影棚光或霓虹灯光都能带来不同的效果。

摄影风格:这种风格在生成肖像时尤其有用,但也可以应用于任何类型的图像。你可以指定角度(高或低)、视角(鸟瞰或仰视)以及快门速度等细节。

色彩和调色板:这些元素允许你对图像进行更细致的控制。你可以指定色调或设定整体氛围,或使用特定的颜色以匹配品牌风格。

5. 使用额外参数

Midjourney 是一款可以接受一些额外参数的 AI 图像生成器。在提示符末尾输入一个破折号或两个连字符,然后输入参数名称和数值。以下是几个常用的参数示例,供你参考:

–chaos:调整结果的变化程度,0为最小变化,100为最大变化。例如,–chaos 80 表示变化很大。

–no:处理负面提示,这意味着你可以指定你不想在图片中看到的内容。例如,–no buildings 会阻止模型绘制建筑物。

–ar:改变图像的宽高比。例如,–ar 16:9 将以 16:9 的纵横比渲染图像。

6. 对真实图像进行逆向工程以找到新的提示

如果你在编写图像生成提示时感到困惑,可以使用其他AI工具来帮助生成新的提示。CLIP Interrogator 是由 Hugging Face 提供的 AI 模型,它可以读取图片并根据图片内容生成文字提示。

然后,你可以基于这些提示编写更详细的提示,输入到 DALL-E 3 和 Adobe Firefly 等文本到图像模型中。

DALL-E(通过ChatGPT Plus)还可以扩展你的提示,使其更加有效,并展示调整后的提示,这可能会为你未来的提示提供一些思路。

最后

上述例子主要集中在聊天机器人、文本生成器和图像生成器上,但你可以将这些新的 AI 提示工程技能应用于任何由人工智能模型驱动的应用程序。通过掌握这些技能,你将能够更好地利用人工智能工具,为各种项目生成更加精确和令人满意的结果。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值