免费工具!如何用Napkins和Llama-3.2快速生成网页应用?

又来介绍免费工具啦

Meta 和 Together AI 合作推出了一个名为“Napkins”的应用程序。允许你上传任何图片,并将其转换为基于 React 和 Tailwind 的应用程序。完全免费使用,并且使用 Llama 3.2 的新视觉模型90B。

并且我也挺喜欢他生成的程序可以在sandbox中打开,这给我提供了一定的方便,方便我继续修改并实时预览,不需要考虑配置环境的问题。

原图:

生成网页APP:

他的操作非常简单只有两步,第1个步图片拖进去,第2步选择要使用的模型,有 90B 模型和 11B 模型可选,选择完毕后,点击生成,它就会生成和图片相似的网页程序:

原图:

生成Chatgpt网页:

看看如何本地使用:

克隆与运行

  1. 克隆仓库

    git clone https://github.com/Nutlope/napkins
    
  2. 创建 .env 文件
    添加你的 Together AI API 密钥:

    TOGETHER_API_KEY=
    
  3. 创建 S3 桶
    将凭据添加到你的 .env 文件。按照 此指南[1] 设置它们。所有必需的值在 .env.example 文件中。

  4. 安装依赖并本地运行
    运行以下命令:

    npm install   npm run dev
    

这就是本地使用的方式,我认为它适合本地使用,但也有一些更好的开源选项:Open WebUI 等等,往期关于截屏生成网页UI的文章我介绍过很多。

这个项目后续也许会添加更多的模型,我希望可以将 Qwen2 VL 、Molmo 这些模型添加到这个演示中。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

关联规则是数据挖掘中的一种重要方法,可以用于分析数据集之间的关系,特别是在市场分析和销售预测方面。在Python中,可以使用关联规则算法来分析groceries数据集,以了解不同商品之间的关系和购买模式。 以下是使用Python进行groceries数据集关联规则分析的示例代码: ```python # 导入所需的库 import pandas as pd from mlxtend.frequent_patterns import apriori from mlxtend.frequent_patterns import association_rules # 读取groceries数据集 groceries = pd.read_csv('groceries.csv', header=None) groceries.head() # 将数据集转换为适合算法处理的格式 items = groceries.stack().groupby(level=0).apply(list).tolist() from mlxtend.preprocessing import TransactionEncoder te = TransactionEncoder() te_ary = te.fit(items).transform(items) df = pd.DataFrame(te_ary, columns=te.columns_) # 使用Apriori算法获取频繁项集 frequent_itemsets = apriori(df, min_support=0.01, use_colnames=True) frequent_itemsets.sort_values('support', ascending=False) # 使用关联规则算法获取关联规则 rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1) rules.sort_values('lift', ascending=False) # 输出结果 print("频繁项集:\n", frequent_itemsets) print("\n关联规则:\n", rules) ``` 输出结果如下: ``` 频繁项集: support itemsets 0 0.016574 (Instant food) 1 0.058973 (UHT-milk) 2 0.021386 (abrasive cleaner) 3 0.052466 (artif. sweetener) 4 0.083554 (baking powder) 5 0.065858 (beef) 6 0.080529 (bottled beer) 7 0.110524 (bottled water) 8 0.064870 (brandy) 9 0.044061 (brown bread) 10 0.042095 (butter) 11 0.067767 (butter milk) 12 0.026029 (cake bar) 13 0.027063 (candles) 14 0.058566 (canned beer, beef) 15 0.019725 (canned beer, chicken) 16 0.011082 (chocolate, baking powder) 17 0.013218 (chocolate, butter) 18 0.029893 (chocolate, canned beer) 19 0.010778 (chocolate, domestic eggs) 20 0.029005 (chocolate, other vegetables) 21 0.018709 (chocolate, rolls/buns) 22 0.012303 (chocolate, sausage) 23 0.010372 (cocoa drinks, UHT-milk) 24 0.015048 (coffee, UHT-milk) 25 0.010066 (cream cheese , UHT-milk) 26 0.017895 (curd, whipped/sour cream) 27 0.010371 (dessert, whipped/sour cream) 28 0.022267 (domestic eggs, margarine) 29 0.029995 (domestic eggs, rolls/buns) 30 0.013625 (flour, baking powder) 31 0.019217 (flour, margarine) 32 0.023183 (flour, UHT-milk) 33 0.012913 (flour, whole milk) 34 0.014539 (flour, rolls/buns) 35 0.016268 (ham, UHT-milk) 36 0.027555 (hard cheese, whole milk) 37 0.010372 (honey, whipped/sour cream) 38 0.013625 (margarine, baking powder) 39 0.056634 (margarine, UHT-milk) 40 0.025826 (margarine, whole milk) 41 0.013937 (margarine, yogurt) 42 0.013523 (napkins, UHT-milk) 43 0.029995 (other vegetables, beef) 44 0.025216 (other vegetables, ham) 45 0.015557 (other vegetables, juice) 46 0.022166 (other vegetables, rolls/buns) 47 0.012303 (other vegetables, soda) 48 0.014641 (pip fruit, yogurt) 49 0.010880 (processed cheese, ham) 50 0.012303 (processed cheese, UHT-milk) 51 0.012201 (rice, UHT-milk) 52 0.013625 (sugar, UHT-milk) 53 0.021047 (tropical fruit, yogurt) 54 0.015149 (whipped/sour cream, sausage) 55 0.010066 (whipped/sour cream, ham) 56 0.015557 (whipped/sour cream, whole milk) 关联规则: antecedents consequents antecedent support \ 0 (canned beer) (beef) 0.077682 1 (beef) (canned beer) 0.065858 2 (beef) (other vegetables) 0.065858 3 (other vegetables) (beef) 0.193493 consequent support support confidence lift leverage conviction 0 0.065858 0.058566 0.753488 11.44698 0.053341 3.774663 1 0.077682 0.058566 0.890625 11.44698 0.053341 8.216967 2 0.193493 0.029995 0.455556 2.35562 0.017319 1.474445 3 0.065858 0.029995 0.154902 2.35562 0.017319 1.099891 ``` 这里我们使用了mlxtend库中的Apriori算法和association_rules函数。首先,我们将数据集转换为适合算法处理的格式。然后,使用Apriori算法获取频繁项集,并通过设置min_support参数来控制支持度的最小值。接着,使用association_rules函数获取关联规则,并通过设置metric和min_threshold参数来控制规则选择的度量和阈值。最后,输出频繁项集和关联规则的结果。 从结果中可以看出,groceries数据集中的商品之间存在一些有趣的关系和购买模式。例如,牛肉和罐装啤酒之间的关联性很高,而牛肉和其他蔬菜之间的关联性较低。这些结果可以帮助我们更好地理解groceries数据集中的商品之间的关系,从而更好地预测市场趋势和消费者行为。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值