什么是相似性搜索?大模型的底座技术

语义分析是人工智能实现的基础,而语义分析实现的基础却是向量

说到相似性搜索可能有些人听说过这个词,而有些人可能都没听过这个词;相似性搜索可能很多人都不清楚,但语义搜索应该很多人都听说过;在某种条件下,可以把相似性搜索等价于语义搜索;但相似性搜索又不完全等价于语义搜索。

今天,我们就来一起聊一下什么是相似性搜索,这个RAG技术中的大杀器,也是人工智能时代不可或缺的一个技术。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

相似性搜索

在传统的计算机技术中,绝大部分搜索都是通过字符匹配实现的;最常见的就是我们在搜索引擎中输入某个问题,然后会得到一些响应,这些响应中就包含你搜索的关键字;这个就是字符匹配。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

而如果是做过技术的人,一定知道什么是字符匹配了;最典型的就是SQL语句,根据某个字符串查询数据。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

但相似性搜索有一个很明显的缺点,那就是不能根据语义进行搜索;还拿四大名著来说,如果使用字符匹配的方式进行搜索。‍‍‍‍

比如说输入孙悟空,那么就只能搜索到与孙悟空三个字相关的内容;但孙猴子,齐天大圣这些和孙悟空有关的内容可能就搜索不到了。‍‍‍‍‍

而相似性搜索是什么样的? ‍‍‍

比如你搜索——一只和尚带着一只猴子,一头猪经历多重困难的故事;这时就应该能搜索到西游记;虽然里面没有提到任何和孙悟空,唐僧等有关的东西,但根据语义理解这就是四大名著之一的西游记。‍‍‍‍‍‍‍‍‍‍‍

这就是语义搜索。‍‍‍‍

显而易见语义搜索的好处是什么?‍‍‍‍‍

语义搜索能够让计算机更好的理解人类的语言和需求;它能够根据你的语义理解你想做什么;而不是你必须给出明确的指令,它才能明白你想做什么。‍‍‍

比如说,我忙了一天了脚不沾地,又饿又困累;这时人工智能就能明白你是想吃饭了;吃完饭之后需要洗个澡,然后好好的睡一觉。而不是说告诉它,我要吃饭,然后它让你去吃饭;我要洗澡,然后让你去洗澡;我要睡觉,然后让你去睡觉。

语义理解是自然语言的基础,也是实现人工智能必不可少的一环;因为语义理解是人类与机器打交道的通道。‍‍‍‍‍

所以,语义理解就是相似性搜索的一个重要应用;但为什么说相似性搜索和语义搜索又不完全一样呢?‍‍

原因在于,相似性搜索还可以应用到图像搜索,混合搜索,只能推荐等多种应用场景。‍‍‍‍

那怎么才能实现这个相似性搜索呢?

要想实现相似性搜索,那么就不得不提的一个东西,那就是——向量。‍

向量由于其强大的功能特性,广泛应用于人工智能的各种场景中;而相似性搜索作为人工智能领域的重要环节,向量就成了其必不可少的一项工具。‍‍‍

在之前的互联网行业中,大部分都是结构化的数据,比如关系型数据库;但随着互联网技术的发展,非结构化数据变得越来越多,比如图像,音视频,图文混合等等多种类型的数据格式。‍‍‍‍‍‍

这时,不同格式的数据处理起来就成为一件很麻烦的事;更重要的是这些数据虽然是非格式化的,但并不代表着这些数据是没有关系的数据。‍

因此,具体怎么处理这些不同类型的数据,就成为了一个难点;后来发现向量特别适合于这种场景,技术人员只需要把文本等数据转化为向量表示的数据即可。‍‍‍‍‍‍‍‍

而后,计算机就可以根据不同向量之间的关系,如距离,长度,方向等去计算不同格式数据之间的相关性。‍‍‍

而现在实现的相似性搜索,主要就是通过欧式距离和余弦相似度等算法来计算不同向量之间的关系,最后实现语义搜索。‍‍‍‍‍‍‍‍‍

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值