语音大模型关键技术深度分析 2025

  1. 基于自回归的语音预训练模型

APC 和 VQ-APC 都是基于自回归的语音预训练模型,模型的输入特征是 80 维的梅尔倒谱特征,模型的主要结构是三层的 LSTM 网络,VQ-APC 在第一层 LSTM 网络后面添加了一层 VQ 量化层,VQ 层的目的是对无限种可能的连续向量进行聚类,让语音的表征向量变为有限种可能。

模型的学习目标是使用第 i 个时刻的信息去预测后面第 n 个时刻的信息,损失函数使用 L1 损失。

最终实验证明,在 APC 模型的 LSTM层中间加入VQ 层能够使模型学到更好的最终向量表示,在音素分类、说话人分类等任务中都能取得更好的性能。

1.2 双向 Transformer 编码网络

Mockingjay 是一种使用双向 Transformer 编码网络在大规模无标签的语音数据上进行预训练的方法,以往的语音表示方法大多是通过过去时刻的信息对未来时刻的信息进行预测,而 Mockingjay 通过过去和未来帧的信息来共同预测当前帧的信息。

为了实现这一点,Mockingjay 提出了掩码声学建模(Masked Acoustic Model)任务,通过该任务来学习语音的特征表示。

掩码声学建模的方式与 Bert 中掩码语言建模的方式(Masked Language Model)类似,选择 15%的输入帧进行遮蔽。与掩码语言建模的方法类似,这 15%的遮蔽部分中80%会被置为 0,10%保持不变,另外 10%替换成其他任意帧,最后模型根据上下文信息对被遮盖的帧进行预测,模型使用 L1 损失函数来最小化这 15%的帧预测值和真实值之间的差距。

在下游任务中,可以通过三种方式将模型学习到的表征与下游任务相结合:

1)从 Mockingjay 最后一层中获取特征表示;

2)求 Mockingjay 中不同层的输出加权求和来获取特征表示;

3)使用预训练的 Mockingjay 和随机初始化的下游模型一起进行微调。

最终实验证明 Mocking 在音素分类、情感识别、说话人识别等任务上都能够有效提升任务的性能,并且在低资源的情况下也能取得较好的结果。

  1. 3 对比预测编码

对 比 预 测 编 码 (CPC) , 是 一 种 通 过 对 比 噪 声 估 计(Noise-Contrastive Estimation)来从高维特征中提取有效表征的无监督学习方法。

CPC 使用原始的音频信号作为输入,首先使用卷积神经网络(CNN)作为非线性编码器将分割的时间窗口上每个观测值进行映射,得到对应的潜在特征表示,然后再将得到的特征向量输入到一个 RNN 自回归模型中得到当前时刻的上下文特征表示。

基于语音的短时平稳性假设,CPC 希望通过训练使模型得到的当前时刻的上下文特征表示与未来几个时刻的潜在特征表示尽可能的接近,即通过一些变换来重构未来时刻的特征。

**CPC 提出了一种基于对比噪声估计(NCE)的损失函数,InfoNCE。**主要方法是将来自于当前上下文特征表示相隔 k 个步长的样本作为正样本,将从序列中随机选取的样本作为负样本,最大化正样本与当前上下文特征之间的互信息同时最小化负样本与当前上下文特征之间的互信息。

CPC 基于完全无监督训练提取特征,可移植性强,可适用于多种任务,并且在很多任务的性能上能够媲美甚至超越当时的有监督方法。

1.4 音频表征向量

Wav2Vec 与 CPC 中的基本思路相近,使用原始音频信号作为输入,基于历史信息和当前输入的信息预测未来的采样点,其中使用了两个编码器进行计算,一个 CNN 特征编码器用于将音频信号数据嵌入到特征空间,获取到对应的编码向量;另一个 CNN 上下文编码器结合多个时间步长的特征编码器来获取上下文表示的特征。

最后对两个网络的输出使用对比损失进行学习,正样本为未来时刻的编码向量,负样本为以一定概率分布采样的编码向量,学习目标为让当前时刻学习的上下文表示更接近正样本的同时远离负样本。

VQ-Wav2Vec 在 Wav2Vec 的基础上做了进一步的改进,在特征编码器的后面加了一层量化模块,使用 K-means 或者 Gumbal-softmax的方法将特征离散化,目的是方便接下来在 Transformer 网络中做掩码预测的任务。

VQ-Wav2Vec 整体训练流程包括三步:

1)使用 CNN 特征编码器、量化模块、CNN 上下文模块,基于对比损失训练 VQ-Wav2Vec;

2)基于 VQ-Wav2Vec 的离散化输出,参考 BERT 中的掩码语言模型建模方法,使用 Transformer 网络训练掩码预测任务;

3)使用上一步预训练得到的 Transformer 网络当做特征提取器,提取的特征用于训练其他任务。Wav2Vec2.0 又在 VQ-Wav2Vec 的基础上将训练流程做了进一步优化和改进:

4)首先 Wav2Vec 使用多层卷积神经网络处理原始语音音频信号,对每 25 毫秒的音频提取一个潜在特征表示;

5)提取的表征向量分别输入到一个量化模块与一个Transformer上下文编码网络中,量化模块从学习的单元清单中选择一个语音单元作为离散化的音频表征向量;上下文编码网络接受的特征向量中有一半会被掩盖掉,Transformer 需要从整个音频序列中添加信息,通过掩盖的位置来识别正确的量化语音单位。

不同于其他语音无监督学习方法,Wav2Vec2.0 没有尝试对音频信息进行重建,而是通过拟合一组语音单元来表征语音音频序列,这些建模单元使得模型将注意力集中在代表语音音频的最重要因素上。

因此通过预训练模型能够预测语音中用于拟合目标的语音单元,同时学习到用于任务学习的语音建模单元应该是什么。在语音识别任务上,Wav2Vec2.0 只需要很少的训练数据就可以取得不错的性能,通过跨语言的预训练,Wav2Vec 2.0 还可以学习多种语言使用的语音单元,极大地降低了很多小语种语音识别中资源不足的问题。

1.5 掩码预测学习

HuBERT 是一种使用掩码预测任务(masked predition)来学习自监督语音表示的新方法,能够对音频中各种类型的词汇以及非词汇信息进行建模。HuBERT 通过使用离线 K-means 聚类步骤,为 BERT 预训练模型提供学习标签,通过预测掩码音频段的正确聚类来进行训练,通过在聚类和预测过程之间交替,HuBERT 会随着时间的推移改进其学习的离散表示。

HuBERT 通过离线聚类获取学习目标的步骤如下:

1)首先在 39 维的 MFCC 特征上进行 K-means 和 GMM 聚类。聚类之后可以获取每一帧语音的聚类中心,此时的聚类中心为每一帧的学习目标;

2)每一帧获取学习目标之后,针对掩码的位置,进行掩码预测任务的训练;

3)进行迭代式的聚类,基于之前的预训练模型,根据预训练模型生成的表征进行第二次的 K-means 聚类,得到更有意义的聚类中心作为新的学习目标。

HuBERT 成功实现了对语音信号的直接语言建模,在低资源语音识别、生成式口语建模、语音压缩任务上都达到了同期最好的性能。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值