想必最近大家都看到了,DeepSeek,这款火爆全球的 AI 工具,仅用 7 天就新增了 1 亿用户,堪称王炸产品。
有热心网友问我:要是把DeepSeek这个王炸产品和其他王炸办公工具结合起来,会产生怎样的化学反应呢?
那今天继续上干货,教大家,如何用 DeepSeek 和 Excel 一键解决办公问题!
今天这篇帖子实用性极强,大家一定要好好收藏哦!
一、识别图片,转换表格
首先准备一张你所需要的清单图片,可以是日常生活所用的,也可以是工作需求要有的。
然后直接将图片导入DeepSeek,输入下面这条提示词:
将上述图片转为可以直接粘贴到Excel表格的数据
点击发送,DeepSeek马上就生成数据。
最后直接复制、粘贴到Excel里就成了。
二、分析问题,书写公式
很多时候Excel小白完全不知道该如何书写公式,临时去学吧又来不及。但这个时候如果运用DeepSeek,效率将大大提高。
比如下面这个求总支出的公式就是这么来的。
首先依然是将图片输入,并且提出问题:
请帮我写出这个总支出的函数
下面👇是DeepSeek的回应:
不仅将函数提供出来,而且还把注意事项和温馨提示都给包圆了(如需处理三位数金额,还可以用别的公式),只能说真的很贴心😎
真心说,以后Excel小白恐怕终于可以秒变大师了。
三、代码生成,自动拆分
下面我们来一个难度大一点的,看看它能不能理解我们的意思,去拆分图表:
我们的目标是,将蔚公子A、B、C、D分成不同的表格。
咱们先导入附件,输入指令:
我想把表格根C列的项目值拆分成多个单独的excel文件,文件名称为C列的项目值(如蔚公子A.xlsx),请帮我写段VBA代码
这个问题可能有点难到它了,虽然Deep Seek确实将代码写了出来,但是我一去测试,却没有成功。
于是我继续追问:
为什么没成功呢,提示" NewWb.SaveAs SavePath & CleanFileName(Key) & “.xlsx”,FileFormat:=51"里的key不对,请你重新形成
这一回答案相当可以,直接一波带走:
好嘛,这也拦不住你😏
四、主动提问,现多面手
好,测试了这么多,我突然想到一个问题,一直都是我提出问题,它给出答案。
那有没有可能,我直接让它自己既生成问题又生成答案呢?说不定会更让人惊喜!
有意思,想到了就立马做,我直接主动提问:
你能直接通过举例,具体说明在Excel里你能做什么吗,请举三个例子,包含例子+解决过程+解决方案
这回DeepSeek开始展现它多面手的能力了,接下来请静静欣赏~
DeepSeek从员工、老板和销售三个角度阐释了它能够做的内容,确实是很全面。
通篇的使用下来,我深深的感觉:Deepseek的确可以帮我们完成工作中不少的工作,这对于Excel小白们来说,就是瞌睡时送上门的抱枕。
虽然可能一些特别复杂的内容还需要斟酌,但是一些基础性的问题绝对是手拿把掐,对于咱们时间紧任务重的打工人们来说,真心值得一试。
快收藏起来,慢慢探索,相信它能成为你提升效率的得力助手!
写在最后
AI时代滚滚而来,不以任何人的意志为转移,而我们首先能做的,就是利用这些AI工具提高我们的效率:DeepSeek+Excel就是如此。
与其抱怨 AI 不够聪明,不如学会用对方法,让 Al 成为你最得力的助手。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。