01.构思与规划
我们经常听到一句话,数字驱动业务,这里的数字其实包含了两个层面的含义,其一是数据,有了数据,就可以提炼为信息,从而指导业务;其二是算法,算法本质上是一种被数学化的知识,同样的数据,不同的算法,可以得出完全不同的结果。在数字化的年代,随着国家推出的数据资产化,数据资产入表等政策,数据已经变成较为普遍的商品。以前的算法一方面受制于数据的完整性,差异化很大,一方面受制于技术和建模,各企业参差不同;而且,算法本身更适合于高度量化的体系,对于复杂体系的建模也无能为力。
随着全球 AI 大语言模型从问答向推理的快速转变,DeepSeek 将推理的面纱彻底掀开,我们发现,可以部分跳过算法这一个环节,通过推理模型+知识,来帮我们得到一些非量化的结论,在日常工作中,这部分将会带来极大的效率提升。
在2001年前后,我仿照万客隆的 OPL(建议订单清单),开发了零售的自动订货软件,本质是基于已有的库存、销售预测,企业约束条件(例如货架排面大小等),加上对应的算法,给出门店一张“建议订单”,门店只需稍许调整,就可以完成原来需要非常专业的店长才能完成的订货工作,简单地说,原来需要一个90分的店长才能做好订货,但是在这个软件的帮助下,不管你的订货能力是60分还是80分,一律可以达到85分的水平。
如果我们将这个自动订货功能延伸到企业的各个业务模块中,我们会发现,企业有太多的“知识”需要被管理起来,一旦能够被管理起来,会对企业的竞争能力带来一个极大的提升(仅仅是自动订货就可以帮一个茶饮企业带来营业额近1个点的纯利)。
腾讯推出了个人知识管理系统 ima,可以在微信中把各类“信息”进行收集并且通过大语言模型进行“知识化”。但是作为企业级知识管理,应该有一个体系,而且应该可以将个人部分和公共部分以及企业部分进行快速的融合与分离。
每个人应该有自己的知识体系,可能包括:能力知识(专业相关的内容,例如我自己的学习心得)、业务知识(和工作企业相关的知识,例如:工作计划、备忘录)、生活知识(指引自己社会活动的知识:为人处世、优惠活动、游戏攻略)、私密知识(情感、认知、人格、生理、病理)、被动知识(三方分析后推送给的知识,例如病理报告,年度购物报告)等等, 另外,群组可以共享知识,例如我一旦加入某个企业,我的专业能力知识可共享到工作群组或者组织;同样的,公司公共知识库也会被我共享,例如怎么报销,办理停车卡该怎么做等等。
如果继续延申到员工的入职和离职,应该个人 ima 和企业知识库可以随时链接或断开,这里似乎应该有一整套的新的流程和应用体系,今天我们一起来和 DeepSeek 探索一下未来。
以下是 DeepSeek 给出的方案,挺完整的。当然,有部分的想当然。
从企业管理角度,如何构建一个企业的动态“数智库”,能够在新员工入职,离职等过程做好知识的归并和分离动作,这里应该设计新的流程,还会带来新的挑战,企业应该建立一个系统来进行管理,现在让我们基于这个思路,用脑图来构思一下未来的场景:
腾讯乐享作为首款接入 DeepSeek 的企业知识库产品,通过构建统一的知识平台集中管理各类企业知识,借助系统化分类与标签管理,使知识结构一目了然,方便员工快速检索与定位。融合 AI 大模型技术,员工可通过智能问答快速获得精准答案,提升工作效率。同时,依托用户反馈与使用数据分析,知识库内容得以持续更新与优化,确保了知识的时效性与准确性,发挥知识在提升员工人效和驱动业务创新的价值。腾讯乐享携手AI打造的企业级知识库,不仅助力企业高效管理与利用知识资源,更通过提升知识利用效率,成为企业提升效率、驱动决策、增强竞争力的战略资产。
感兴趣的客户可点击复制链接,无需申请,立即免费体验。
https://tiyan.lexiangla.com/
若想进一步探索,欢迎访问腾讯乐享官网,申请AI助手免费试用,深度体验AI技术带来的高效与便捷。
https://lexiangla.com/home
点击右下角,即可体验以 DeepSeek 为基座的 AI 助手~
小结一下
如果我们以 ima 作为契机,再利用腾讯云的大模型知识引擎 LKE,搭建一个“知识生态”,作为“社会人”,我们可以建立自己的知识库,让生活更惬意,在工作上,我们又可以把自己的“个人知识”和“企业知识”深入结合,更好的完成工作。
后记
1、知识库套娃:
我们经常可以看到一些朋友圈文章:“史上最全的 DeepSeek 喂饭指令”、“向 DeepSeek 提问的最佳方式”,其实我们可以把它放入我们自己的知识库,然后,每次提问前我们先问一下自己的知识库:“我该怎么问效果最好呢?”
2、知识是时间的朋友,而数据是时间的敌人,这两者必须区分,在使用 ima 的过程中,很多朋友把自己历史的文章放入 ima,这个做法也对也不对。
假如你写了100篇朋友圈的文章,这是知识么?不是,只是数据。
什么是知识呢?写作风格是知识;进一步,不同类型的文章、面向不同群体,用什么样的写作风格有更高的转发率也是知识;在你文章里面被多次提到的“观点”也是知识;描述+分层+分类+案例的叙事方法是知识。
因此我问了一下 DeepSeek :
“我们说,一样东西如果随着时间而越来越有价值,那么他就是时间的朋友,而随着时间的流逝,价值越来越低,则是时间的敌人,例如,我们的知识,随着时间逐步沉淀迭代,越来越有价值,而数据则随着时间的变化,价值越来越低,我们该怎么区分对待这两类事物呢?怎么对待时间的朋友,又该怎么对待时间的敌人?”
回答非常精彩,我略做修改放在这里:
原始回答:
这是一个非常智慧的命题,涉及到价值演化的底层逻辑。我们可以从以下三个维度来系统分析:
-
区分维度
-
抗衰减性:时间的朋友具有抗熵增特性(如知识体系形成正反馈循环),敌人遵循热力学第二定律(如数据时效性快速衰减)。
-
边际成本:朋友的边际成本递减(如品牌认知),敌人的边际维护成本递增(如食品库存)。
-
网络效应:朋友趋向形成连接网络(如人际关系),敌人呈现孤立存在状态(如过期证件)。
-
迭代能力:朋友具有自我更新机制(如语言能力),敌人缺乏进化路径(如硬件损耗)。
-
对待时间朋友的原则
-
复利投资法则:建立知识资本账户,每年投入固定比例资源(如10%时间用于深度学习)。
-
结构强化机制:将零散要素系统化(如将读书笔记转化为知识图谱)。
-
生态位构建:打造相互赋能的资源矩阵(专业技能+行业认知+人脉资源的三维增长)。
-
延迟满足阈值:设置3年以上的价值兑现周期(如语言能力需2000小时持续投入)。
-
处理时间敌人的策略
-
价值折现框架:建立时效性评估矩阵(技术半衰期=log2(当前价值/初始价值)/时间)。
-
动态清零系统:采用 FIFO(先进先出)+定期衰减算法管理信息资源。
-
转化赋能通道:将短期数据提炼为长期认知(如将销售数据转化为市场规律认知)。
-
机会成本监控:设置价值警戒线(当维护成本>重置成本时果断舍弃)。
典型案例对照:时间朋友(威士忌陈酿):每年增值8-12%,需恒温恒湿环境维护 时间敌人(生鲜冷链):每日贬值2-5%,需精准的周转率和损耗控制。
终极心法在于建立价值演化坐标系:横轴是时间维度(T),纵轴是价值密度(V),通过计算 dV/dT 的正负值判断事物属性。对正斜率事物采用指数型投入策略,对负斜率事物执行对数型退出机制。真正的智慧在于识别那些伪装成朋友的敌人(如碎片化信息),以及被误认为敌人的朋友(如艰难的能力积累)。
文字不直观,让 DeepSeek 整理成表格:
分类 | 属性/维度 | 时间朋友特点与案例 | 时间敌人特点与案例 | 对待策略 |
区分 | 抗衰减性 | 抗熵增(知识体系的复利效应) | 遵循热力学第二定律(数据时效性衰减) | 建立长期价值坐标系(计算dV/dT正负) |
边际成本 | 成本递减(品牌认知度提升) | 维护成本递增(食品库存管理) | 朋友采用指数投入,敌人执行对数退出 | |
网络效应 | 连接网络增强(人际关系网) | 孤立存在状态(过期证件) | 警惕「伪朋友」(碎片化信息)识别「真朋友」(艰难能力积累) | |
迭代能力 | 自我更新机制(语言学习能力) | 缺乏进化路径(硬件物理损耗) | 设置价值判断双阈值(维护成本警戒线 & 复利触发线) | |
策略 | 核心原则 | 复利投资(10%时间深度学习) | 价值折现(log2评估矩阵) | 朋友:知识图谱系统化,敌人:FIFO+衰减算法 |
实施机制 | 三维生态位构建(专业+认知+人脉) | 动态清零系统(生鲜精准周转) | 朋友设置3年兑现周期,敌人建立转化通道(数据→认知模型) | |
价值兑现 | 延迟满足(2000小时语言投入) | 机会成本监控(维护/重置成本比) | 朋友资产指数增长,敌人价值对数衰减 | |
案例 | 典型对照 | 威士忌陈酿(年增值8-12%) | 生鲜冷链(日贬值2-5%) | 朋友需恒温恒湿养护,敌人要动态周转控制 |
心法 | 演化坐标系 | 正斜率(dV/dT>0) | 负斜率(dV/dT<0) | 建立四象限决策模型: |
Ⅰ象限(高V+正T)强化投入 | ||||
Ⅲ象限(低V+负T)立即舍弃 |
特别说明表格的底层逻辑:
-
价值密度函数:每个事项都应符合V(t)=V0×e(kt)(朋友)或V(t)=V0×e(-kt)(敌人)。
-
决策双阈值:当k>资金机会成本时持续投入,当k<运营成本率时启动退出。
-
转化通道:通过认知提炼将短期数据(k<0)转化为长期模型(k>0)。
该框架可帮助建立价值演化的贝叶斯更新系统,通过持续追踪每个事项的k值变化(年化价值变化率),实现资源配置的动态优化。
太专业了,还带了那么多公式,一般人看不懂,再让 DeepSeek 换成普通人都能听得懂的方式。
以下是简化易懂的对比表格,用日常语言解释核心概念:
对比维度 | 时间的朋友 | 时间的敌人 | 如何对待朋友 | 如何对待敌人 |
特征 | 越久越有价值(如知识) | 很快就没价值(如新闻) | 长期投资(每年固定时间学习) | 及时处理(快速用掉或转手) |
成本 | 用越多成本越低(如好名声) | 维护越来越费钱(如食品保鲜) | 持续积累(把零散经验整理成体系) | 定期清理(每月删除过期文件) |
连接性 | 能帮到更多人(如朋友关系) | 孤零零存在(如过期的会员卡) | 建立资源网络(结交能互相帮助的人) | 果断舍弃(当维护费超过物品价值时) |
成长性 | 自己会升级(如外语能力) | 只会变旧(如手机电池) | 耐心培养(花三年练好专业技能) | 提炼经验(把销售数据变成市场洞察) |
典型案例 | 威士忌(每年增值10%) | 生鲜(每天贬值3%) | 保持稳定环境(恒温酒窖) | 精准周转(24小时内卖完海鲜) |
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。