可解释Transformer
Transformer 是 NLP 最重要的技术发展,也是最近DeepSeek等大模型的基础,然而它们的过程仍然不透明,缺乏可解释性。这是一个一直存在的问题,因为随着机器学习的重大进步,我们并不总是能够解释黑箱模型的内部。
注意力可视化
Transformer 本质上是不可解释的,但已经有许多为基于注意力的模型提供事后可解释性的工具。
如一些早期的工作,尝试可解释Attention内部:https://arxiv.org/abs/1804.09299
常用注意力矩阵热图和二分图表示注意力,这也是今天仍在使用的方法。但这些方法也有一些局限性。
Transformer可解释工具
这里介绍一个模型:BertViz
该方法在多个局部尺度上可视化注意力机制:神经元级别、多头注意力级别和模型级别。
神经元级别
在下面的 GIF 中,正值为蓝色,负值为橙色,颜色强度反映了值的大小。连接线根据各个单词之间的注意力得分进行加权。
1_8XaojE6U_7vwabU0q0om2Q
神经元视图是最精细的结果,但为了更深入地研究,我们可以使用此视图将神经元链接到特定的注意力模式。
需要注意的是,注意力权重和模型输出之间存在什么关系尚不完全清楚。有些人,如 Jain 等人在attention-is-not-explanation中声称(https://paperswithcode.com/paper/attention-is-not-explanation),不应将标准注意力模块视为为预测提供有意义的解释。然而我们也没有其他选择,BertViz 仍然是当今最流行的注意力可视化工具之一。
多头注意力视图
attention-head 视图通过揭示 attention heads之间的模式,显示 attention 如何在同一 transformer 层内的 tokens 之间流动。在此视图中,左侧的标记正在关注右侧的标记,并且注意力表示为连接每个标记对的线。颜色对应于注意力头,线条粗细表示注意力权重。
注意力头不共享参数,因此每个头都会学习独特的注意力机制。在下图中,给定一个 input,在同一模型的各层中检查注意力头。我们可以看到,不同的注意力头似乎集中在非常独特的模式上。
在左上角,相同单词之间的注意力最强。在右上角和左下角,注意力头专注于每个分隔符(分别为 [SEP] 和 [CLS])。
模型视图
模型视图是所有图层和头部的注意力的概略图,可能会注意到跨层的注意力模式,说明了注意力模式从输入到输出的演变。每行数字代表一个注意力层,每列代表单独的注意力头。
代码
在 Jupyter Notebook 中运行 BertViz
从命令行:
pip install bertviz
您还必须安装 Jupyter Notebook 和 ipywidgets:
pip install jupyterlab
pip install ipywidgets
然后在出现提示时单击并选择。New``Python 3 (ipykernel)
示例代码
运行以下代码以加载模型并将其显示在模型视图中:xtremedistil-l12-h384-uncased
from transformers import AutoTokenizer, AutoModel, utils
from bertviz import model_view
utils.logging.set_verbosity_error() # Suppress standard warnings
model_name = "microsoft/xtremedistil-l12-h384-uncased" # Find popular HuggingFace models here: https://huggingface.co/models
input_text = "The cat sat on the mat"
model = AutoModel.from_pretrained(model_name, output_attentions=True) # Configure model to return attention values
tokenizer = AutoTokenizer.from_pretrained(model_name)
inputs = tokenizer.encode(input_text, return_tensors='pt') # Tokenize input text
outputs = model(inputs) # Run model
attention = outputs[-1] # Retrieve attention from model outputs
tokens = tokenizer.convert_ids_to_tokens(inputs[0]) # Convert input ids to token strings
model_view(attention, tokens) # Display model view
可视化效果可能需要几秒钟才能加载。随意尝试不同的输入文本和模型。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。