图神经网络(Graph Isomorphism Network,GIN)的PyTorch实现

本文介绍如何用PyTorch实现图Isomorphism Network(GIN)。通过消息传递和节点表示更新,GIN学习图数据的节点表示。文中详细阐述了模型结构,包括多层感知机和图神经网络层,并提供了训练模型的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图神经网络(Graph Neural Network,GNN)是一类用于处理图数据的深度学习模型。其中,Graph Isomorphism Network(GIN)是一种常用的图神经网络模型,它通过将节点特征与邻居节点特征进行聚合来学习节点的表示。

在本文中,我们将使用PyTorch实现GIN,并给出相应的源代码。让我们开始吧!

首先,我们需要导入所需的库:

import torch
import torch.nn as nn
import torch.nn.functional as F

接下来,我们定义GIN的主要模型类GINLayer。每个GINLayer由两个步骤组成:消息传递ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值