pytorch中的squeeze和unsqueeze的用法小结

1. 理论简介

  • squeeze

squeeze的作用是对tensor变量进行维度压缩,去除维数为1的维度。

例如:一个3×2×1×2×1的tensor,squeeze()之后便成了3×2×2。存储的数据并没有发生变化,但是去除了“多余”的维度信息。

  • unsqueeze

unsqueeze的作用是对数据维度进行扩充,给指定位置加上维数为1的维度

例如:原本有个三行的数据,也就是说,它的维度为(3, 1),在0的位置加了一维,那么它的维度变为(1, 3, 1)

请注意,不管是squeeze还是unsqueeze操作,都不会影响原先的张量维度,所以下面的操作中,都将压缩和解压缩操作赋值给了原张量。

2. 举例

2.1 squeeze

(1)x.squeeze()

所有1维数据都进行压缩。

import torch

x = torch.rand(4, 3, 1, 3, 1)
print(x.size())
x = x.squeeze()
print(x.size())

输出:

torch.Size([4, 3, 1, 3, 1])
torch.Size([4, 3, 3])

(2)x.squeeze(n)

指定压缩第n位,如果它的维数为1,则压缩,反之不对该维度操作。

import torch

x = torch.rand(3, 2, 1, 2, 1)
print(x.size()) #torch.Size([3, 2, 1, 2, 1])
x = x.squeeze(0) #第0位的维度为3,不进行压缩
print(x.size()) #torch.Size([3, 2, 1, 2, 1])
x = x.squeeze(2)#第2位的维度为1,进行压缩
print(x.size()) # torch.Size([3, 2, 2, 1])

输出:

torch.Size([3, 2, 1, 2, 1])
torch.Size([3, 2, 1, 2, 1])
torch.Size([3, 2, 2, 1])

(3)torch.squeeze(x)

pytorch中的torch.squeeze(x)方法与上面提到的Tensor对象中的方法作用相同,只不过是语法上有细微的差别。

import torch

x = torch.rand(3, 2, 1, 2, 1)
x = torch.squeeze(x) # 同x.squeeze()
print(x.size())

x = torch.rand(3, 2, 1, 2, 1)
x = torch.squeeze(x, 2) # 同x.squeeze(2),压缩第2维
print(x.size())

输出:

torch.Size([3, 2, 2])
torch.Size([3, 2, 2, 1])

2.2 unsqueeze

(1)x.unsqueeze(n)

x.unsqueeze(n)表示在第n位的位置添加1维。

import torch

x = torch.rand(3, 2)
x = x.unsqueeze(1)
print(x.size())

输出:

torch.Size([3, 1, 2])

(2)torch.unsqueeze(x,n)

torch.unsqueeze(x,n)作用同x.unsqueeze(n),都表示在第n位的位置添加1维,只不过语法稍有区别。

import torch

x = torch.rand(3, 2)
x = torch.unsqueeze(x, 1) 
print(x.size())

输出:

torch.Size([3, 1, 2])
### PyTorch `unsqueeze` 函数详解 #### 功能描述 `unsqueeze` 是 PyTorch 中用于向张量增加维度的操作之一。该函数允许指定在哪一位置插入新的维度,从而改变张量的形状而不影响其实际数据[^2]。 #### 参数说明 - **输入参数**: 需要被处理的张量。 - **dim (int)**: 新增维度的位置索引。可以是负数,表示相对于最后一位来计算位置;正数则从前到后定位新增轴所在之处[^3]。 #### 返回值 返回一个新的具有额外单一维度的张量副本,原张量保持不变[^1]。 #### 实际应用案例 ##### 示例 1: 向第0维添加新维度 ```python import torch # 创建一个形状为 (3, 4) 的随机张量 x = torch.randn(3, 4) print("原始张量形状:", x.shape) # 在第0维处加入新维度 y = x.unsqueeze(0) print("在0维插入新维度后的张量形状:", y.shape) ``` 这段代码创建了一个初始尺寸为 `(3, 4)` 的二维张量,并通过调用 `.unsqueeze(0)` 方法在其最前面增加了新的一维,最终得到三维张量 `(1, 3, 4)`。 ##### 示例 2: 多次使用 unsqueeze 来调整张量结构 ```python z = torch.tensor([[1., 2.], [3., 4.]]) a = z.unsqueeze(-1).unsqueeze(0) print(a.size()) # 结果将是 torch.Size([1, 2, 2, 1]) ``` 这里展示了如何连续两次运用 `unsqueeze()` 方法,在不同位置分别扩展了两个不同的单元素维度,使得原本简单的 `[2, 2]` 形状变为更复杂的四维形式 `[1, 2, 2, 1]`。 #### 关键点总结 - 当需要临时修改某些层之间的接口匹配度时(比如卷积神经网络),可以通过 `unsqueeze` 调整特征图或其他中间变量的空间布局。 - 对于广播机制下的批量运算来说,合理利用此功能可以帮助简化模型设计并提高效率。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

非晚非晚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值