动物关键点数据集-yolov8 pose动物关键点识别-动物姿态估计-keypoints(代码+数据集)

跨域适应于动物姿态估计

概览
在这里插入图片描述

本文介绍了一个专门用于动物姿态估计的数据集,该数据集包含了五个不同种类的动物:狗、猫、牛、马和羊。整个数据集中共包含超过6000个实例,分布在4000多张图像上。此外,数据集还为另外七种动物提供了边界框注释。更多详情请参见相关论文。

在该数据集中,我们总共标注了20个关键点,包括两只眼睛、喉咙、鼻子、肩胛骨(马匹)、两耳基部、尾基部、四个肘部、四个膝盖以及四个爪子。为了展示数据集的特点,我们选取了一些样本。第一组图展示了来自五种动物类别的带有关键点标签的动物实例;第二组图则显示了七个不同类别(水獭、山猫、犀牛、河马、黑猩猩、熊和羚羊)中仅标注有边界框的动物图像。
在这里插入图片描述

更新记录

  • 7月22日:我们对提供的关键点注释进行了更新。
    • 我们修正了许多之前错误的标注(总计260张图片),对于之前的低质量标注表示歉意。
    • 为了用户的便利,我们现在也提供了PASCAL VOC数据集中的图像,所有带有关键点注释的图像现在可以作为一个文件下载。
    • 我们将关键点注释文件调整至与COCO格式相一致。

下载信息

本数据集中的图像是从多个来源收集而来的,包括互联网及其他公开数据集。为了方便用户使用,我们提供了一套整合后的数据集图像及相应标注。关于数据源及相关版权问题,请查阅链接文件中的致谢部分。

  • 第一部分 关键点标注的动物数据(4,000+ 图像,涵盖5种类别)
  • 第二部分 仅有边界框标注的动物数据(涵盖7种类别)

在这里插入图片描述

扩展内容

动物姿态估计的重要性

动物姿态估计是指通过计算机视觉技术自动识别并定位动物身体各部位位置的过程。这一技术不仅在生物研究领域具有重要意义,在农业自动化、野生动物保护等多个方面也展现出巨大潜力。例如,在畜牧业中,通过对家畜的姿态分析可以实时监测其健康状况;在自然保护区,这项技术能够帮助研究人员更准确地追踪动物行为模式,进而更好地理解生态系统的运作机制。

数据集构建挑战

创建高质量且多样化的动物姿态估计数据集面临着多重挑战。首先,不同物种之间存在显著的身体结构差异,这要求标注者具备较强的专业知识才能正确标记出各个关键点。其次,野外拍摄条件下获取到的动物图像往往背景复杂、光照条件不一,给自动检测算法带来了额外难度。最后,由于伦理考虑限制了某些稀有或濒危物种的数据采集,使得特定类型动物的数据稀缺性成为了另一个难题。

技术创新点

针对上述问题,本文提出了一种新颖的方法来提高跨域适应能力,即让模型能够在一种环境下训练后顺利迁移至另一种环境进行测试。具体来说,作者们引入了领域自适应策略,通过最小化源域与目标域之间的分布差距来增强模型泛化性能。此外,他们还设计了一系列数据增强技巧,如随机旋转、缩放变换等,以增加训练样本多样性,从而进一步提升模型鲁棒性。
在这里插入图片描述

实验结果与讨论

实验结果显示,所提出的方法相比传统方法在多种场景下均表现出了优越性,特别是在处理那些难以直接获得大量标记数据的目标域时尤为明显。然而,值得注意的是,尽管取得了不错的成绩,但如何更加高效地利用有限资源继续优化模型依然是未来工作中需要重点关注的问题之一。

def _box2cs(box):
    """This encodes bbox(x,y,w,h) into (center, scale)
    Args:
        x, y, w, h

    Returns:
        tuple: A tuple containing center and scale.

        - np.ndarray[float32](2,): Center of the bbox (x, y).
        - np.ndarray[float32](2,): Scale of the bbox w & h.
    """

    input_size = (IMAGE_SIZE, IMAGE_SIZE)
    x, y, w, h = box[:4]

    aspect_ratio = input_size[0] / input_size[1]
    center = np.array([x + w * 0.5, y + h * 0.5], dtype=np.float32)

    if w > aspect_ratio * h:
        h = w * 1.0 / aspect_ratio
    elif w < aspect_ratio * h:
        w = h * aspect_ratio

    # pixel std is 200.0
    scale = np.array([w / 200.0, h / 200.0], dtype=np.float32)

    scale = scale * 1.25

    return center, scale


def _xywh2xyxy(bbox_xywh):
    """Transform the bbox format from xywh to x1y1x2y2.

    Args:
        bbox_xywh (ndarray): Bounding boxes (with scores),
            shaped (n, 4) or (n, 5). (left, top, width, height, [score])
    Returns:
        np.ndarray: Bounding boxes (with scores), shaped (n, 4) or
          (n, 5). (left, top, right, bottom, [score])
    """
    bbox_xyxy = bbox_xywh.copy()
    bbox_xyxy[2] = bbox_xyxy[2] + bbox_xyxy[0] - 1
    bbox_xyxy[3] = bbox_xyxy[3] + bbox_xyxy[1] - 1

    return bbox_xyxy


def preprocess(img, bbox):
    image_size = (IMAGE_SIZE, IMAGE_SIZE)

    c, s = _box2cs(bbox)
    r = 0

    trans = get_affine_transform(c, s, r, image_size)
    img = cv2.warpAffine(
        img,
        trans, (int(image_size[0]), int(image_size[1])),
        flags=cv2.INTER_LINEAR)

    # normalize
    img = normalize_image(img, normalize_type='ImageNet')

    img = img.transpose(2, 0, 1)  # HWC -> CHW
    img = np.expand_dims(img, axis=0)

    img_metas = [{
        'center': c,
        'scale': s,
    }]

    return img, img_metas

总之,《跨域适应于动物姿态估计》不仅为解决实际应用中的难题提供了新思路,同时也推动了整个领域向更深层次发展迈进了一步。随着技术不断进步,相信不久将来我们将见证更多令人兴奋的研究成果涌现出来。

### 如何使用YOLOv8-Pose进行动物关键点检测 #### 准备工作 为了实现基于YOLOv8-Pose关键点检测任务,首先需要安装Ultralytics库并下载官方代码。可以通过以下命令完成环境搭建: ```bash pip install ultralytics ``` 之后可以验证安装是否成功以及加载模型的功能是否正常运行[^1]。 #### 数据集准备 对于动物关键点检测的任务,数据标注是一个重要环节。通常情况下,需要创建一个自定义的数据集,并将其转换为COCO格式以便于处理。具体来说,每张图像中的动物实例都需要被标记其边界框和对应的多个关键点位置。这些关键点可以根据实际需求来设定,比如头部、四肢关节等部位的位置信息[^2]。 #### 训练过程概述 一旦完成了上述准备工作,则可进入模型训练阶段。以下是几个主要步骤及其对应的操作说明: - **配置文件设置** 创建或修改现有的yaml配置文件以适应新的数据结构。此文件应包含路径到训练/测试图片目录以及类别数等相关参数。 - **启动训练脚本** 使用如下Python命令行调用来开始训练流程: ```python from ultralytics import YOLO model = YOLO('yolov8n-pose.pt') # 加载预训练权重 results = model.train(data='path/to/data.yaml', epochs=100, imgsz=640) ``` 这里`data`指向之前提到过的那个描述了我们特定用途的数据布局的`.yaml`文档;而其他选项像迭代次数(`epochs`)或者输入尺寸大小(`imgsz`)都可以依据实际情况调整优化效果。 #### 示例代码展示 下面给出一段完整的例子用于演示整个操作链路: ```python import os from ultralytics import YOLO def main(): dataset_path = 'datasets/animal_keypoints' if not os.path.exists(dataset_path): raise FileNotFoundError(f"The specified directory {dataset_path} does not exist.") model = YOLO('yolov8n-pose.pt') results = model.train( data=os.path.join(dataset_path,'config.yaml'), epochs=50, batch=-1, patience=30, imgsz=640) if __name__ == "__main__": main() ``` 以上程序片段展示了如何利用已有的小型网络版本作为初始状态来进行进一步微调学习的过程。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值