天气识别、图像处理等需要大量天气数据集,并且自动驾驶面对各种场景,需要大量不同天气数据,因此本人搜集了一些数据集。
各视觉项目代码和数据集:私信获取。
# 雾天道路
大雾行车记录仪,雾天道路。
添加图片注释,不超过 140 字(可选)
结合极端恶劣天气数据集与自动驾驶数据集,并使用YOLOv11进行训练,可以增强自动驾驶系统在各种复杂天气条件下的鲁棒性和准确性。下面是实现这一目标的几个关键步骤:
1. 数据集准备
极端恶劣天气数据集
- ACDC Dataset: 提供了在雾、夜晚、雨和雪等条件下采集的道路图像。这类数据集非常适合用来评估和改善模型在不良天气条件下的表现。
- 其他相关数据集: 除了ACDC之外,还可以寻找或创建包含不同恶劣天气情况的数据集,以覆盖更多的场景。
自动驾驶数据集
- KITTI Dataset: 包括了城市、住宅区和道路场景,适用于立体视觉、光流预测、视觉测距、3D目标检测等任务。
- Waymo Open Dataset: 提供了大量高质量的自动驾驶数据,包括LiDAR扫描、高分辨率图像以及详细的标签信息。
- BDD100K: 由伯克利大学发布的大型驾驶视频数据集,包含多种天气状况下的数据。
2. 数据预处理
- 格式转换: 将选定的数据集转换成YOLOv11支持的数据格式。通常这意味着要将图片调整为固定尺寸,并将标签转换为YOLO所需的格式(例如,文本文件中每个目标一行,包含类别ID和边界框坐标)。
- 数据增强: 对于小规模数据集或想要提高模型泛化能力的情况,可以通过旋转、缩放、颜色变换等方式对原始图像进行增强。
3. YOLOv11环境配置与模型训练
- 环境搭建: 确保已经按照前面提到的步骤设置了Python环境(推荐使用Conda),并安装了Ultralytics的YOLOv11包。
- 配置文件准备: 修改YOLOv11的配置文件(如
data.yaml
),指定训练和验证数据集路径、类别列表等信息。 - 训练模型: 使用YOLOv11提供的训练脚本来训练模型。您可以调整参数如
epochs
(训练周期数)、batch
(批次大小)、imgsz
(输入图像尺寸)等以适应您的硬件资源和数据集特性。
4. 模型评估与调优
- 评估: 在不同的测试集上评估训练得到的模型性能,尤其是那些包含了极端天气条件的数据。
- 调优: 根据评估结果,可能需要回过头去调整模型架构、超参数或是再次增强数据集,直至达到满意的性能水平。
5. 部署
一旦模型训练完成并通过了严格的测试,就可以将其部署到实际的自动驾驶系统中。这可能涉及到将模型转换为适合嵌入式设备的格式(例如ONNX),以及编写相应的推理代码来处理实时数据流。
注意事项
- 版权问题: 在使用任何公开数据集时,请确保遵守相关的许可协议。
- 安全考量: 在将模型应用于真实世界的自动驾驶系统之前,务必进行充分的安全测试,确保系统能够在所有预期的环境下可靠地运行。
通过上述步骤,您可以构建出一个能够应对多种恶劣天气条件的自动驾驶感知系统。
添加图片注释,不超过 140 字(可选)
添加图片注释,不超过 140 字(可选)
以上只是数据集的一部分,数据集都是道路上内容。**图像去雾/自动驾驶数据集可用。
# 雨天
添加图片注释,不超过 140 字(可选)
添加图片注释,不超过 140 字(可选)
数据集可用去图像去雨 ,去雾去雨代码交流。
# 雪天
添加图片注释,不超过 140 字(可选)
添加图片注释,不超过 140 字(可选)
适合自动驾驶 ,图像去雪
下列项目代码需要 可私信
添加图片注释,不超过 140 字(可选)
3)]