如何使用课堂行为检测数据集进行训练,并提供详细的步骤和代码示例 课堂行为 3800张 带标注 voc yolo 老师行为数据集课堂行为检测数据集应用学习课堂学生行为检测等 目标检测yolov5-10

在这里插入图片描述
老师教师课堂行为检测数据集 课堂行为 3800张 带标注 voc yolo 老师行为数据集课堂行为检测数据集在这里插入图片描述

label| pic_ num| box_ _num
Crossing legs: (1191, 1192)
Using a phone: (1291, 1295)
Teaching or asking: (564, 564)
Looking at the screen:
(289, 289)
Writing: (312, 312)
Guiding students: (625, 626)
total: (3898, 4278)
在这里插入图片描述
如何使用课堂行为检测数据集进行训练,并提供详细的步骤和代码示例。

1. 数据集准备

1.1. 数据集结构

确保你的数据集按照以下结构组织:

classroom_behavior/
│
├── images/
│   ├── train/
│   ├── val/
│   └── test/
│
├── labels/
│   ├── train/
│   ├── val/
│   └── test/
│
└── data.yaml
1.2. 创建数据配置文件 (data.yaml)
train: ./classroom_behavior/images/train
val: ./classroom_behavior/images/val
test: ./classroom_behavior/images/test

nc: 6  # 类别数量(6类)
names: ['crossing_legs', 'using_phone', 'teaching_or_asking', 'looking_at_screen', 'writing', 'guiding_students']  # 类别名称

# 下载数据集
download: ''

2. 安装YOLOv8

确保你已经安装了YOLOv8。YOLOv8是YOLO系列的最新版本,可以从Ultralytics的GitHub仓库中获取。

git clone https://github.com/ultralytics/yolov8.git
cd yolov8
pip install -r requirements.txt

3. 训练模型

3.1. 配置训练

使用YOLOv8进行课堂行为检测。以下是一个示例命令:

python train.py --data ./classroom_behavior/data.yaml --img 640 --batch 16 --epochs 100 --name yolov8_custom_classroom_behavior --weights yolov8s.pt

4. 评估模型

4.1. 运行评估

在验证集上评估训练好的模型:

python val.py --data ./classroom_behavior/data.yaml --weights runs/train/yolov8_custom_classroom_behavior/weights/best.pt
4.2. 可视化结果

你可以使用val命令的--save标志来可视化结果:

python val.py --data ./classroom_behavior/data.yaml --weights runs/train/yolov8_custom_classroom_behavior/weights/best.pt --save

5. 示例代码

5.1. 数据预处理示例
import cv2
import os

def resize_images(input_dir, output_dir, size=(640, 640)):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    
    for filename in os.listdir(input_dir):
        if filename.endswith(('.jpg', '.png', '.jpeg')):
            img_path = os.path.join(input_dir, filename)
            img = cv2.imread(img_path)
            img_resized = cv2.resize(img, size)
            output_path = os.path.join(output_dir, filename)
            cv2.imwrite(output_path, img_resized)

# 示例用法
resize_images('./classroom_behavior/images/train', './classroom_behavior/images/train_resized')
resize_images('./classroom_behavior/images/val', './classroom_behavior/images/val_resized')
resize_images('./classroom_behavior/images/test', './classroom_behavior/images/test_resized')
5.2. 训练模型
import torch

# 确保YOLOv8路径正确
YOLO_PATH = 'path/to/yolov8'

# 加载YOLOv8模型
model = torch.hub.load(YOLO_PATH, 'custom', path='runs/train/yolov8_custom_classroom_behavior/weights/best.pt')

# 训练模型
model.train()
model.fit(data='classroom_behavior/data.yaml', imgsz=640, batch=16, epochs=100)
5.3. 评估模型
# 加载训练好的模型
model = torch.hub.load(YOLO_PATH, 'custom', path='runs/train/yolov8_custom_classroom_behavior/weights/best.pt')

# 评估模型
results = model.val(data='classroom_behavior/data.yaml', weights='runs/train/yolov8_custom_classroom_behavior/weights/best.pt', save=True)
print(results.metrics)

6. 其他建议

  • 数据增强:使用数据增强技术来提高模型的鲁棒性。YOLOv8支持多种数据增强方法,如翻转、旋转、裁剪等。
  • 模型集成:集成多个模型以提高性能。
  • 模型量化:量化模型以适应边缘设备。

7. 示例代码

7.1. 数据预处理示例
import cv2
import os

def resize_images(input_dir, output_dir, size=(640, 640)):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    
    for filename in os.listdir(input_dir):
        if filename.endswith(('.jpg', '.png', '.jpeg')):
            img_path = os.path.join(input_dir, filename)
            img = cv2.imread(img_path)
            img_resized = cv2.resize(img, size)
            output_path = os.path.join(output_dir, filename)
            cv2.imwrite(output_path, img_resized)

# 示例用法
resize_images('./classroom_behavior/images/train', './classroom_behavior/images/train_resized')
resize_images('./classroom_behavior/images/val', './classroom_behavior/images/val_resized')
resize_images('./classroom_behavior/images/test', './classroom_behavior/images/test_resized')

8. 运行和调试

确保你的环境配置正确,并且所有依赖项都已安装。运行模型训练和评估时,确保模型文件路径正确,并且数据集路径正确。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值