垃圾检测识别/垃圾分类系统/垃圾识别-cnn网络-带UI界面
该项目已训练好网络模型,配置好环境即可直接运行使用,运行效果见图像
项目基本介绍:
【网络】深度学习CNN网络 yolo8网络
【环境】python>=3.5 ptorch opencv pyqt5
【文件】训练预测全部源代码、训练好的模型,项目报告文档
【功能】
可对38种垃圾进行检测识别,并进行四分类,配置好环境即可使用。
好的,我们将构建一个完整的垃圾检测识别系统,使用YOLOv8网络。该项目已经训练好模型,并提供了训练预测的全部源代码、数据集和文档。以下是详细的说明文档和UI界面实现。
项目结构
waste_classification/
├── data/
│ └── dataset/ # 包含垃圾图像数据集
├── models/
│ └── yolo8.pt # 训练好的YOLOv8模型
├── src/
│ ├── predict.py # 预测脚本
│ ├── utils.py # 工具函数
│ ├── app.py # Flask应用入口
│ └── ui_app.py # PyQt5 UI应用入口
├── README.md # 项目说明文档
└── requirements.txt # 依赖项
安装依赖项
首先,安装所需的Python库:
pip install torch torchvision opencv-python pyqt5 ultralytics
模型预测
src/predict.py
文件
前端界面 (Flask)
src/app.py
文件
templates/index.html
文件
创建一个简单的HTML模板用于上传图片并显示预测结果:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Waste Detection System</title>
<style>
body {
font-family: Arial, sans-serif;
display: flex;
justify-content: center;
align-items: center;
height: 100vh;
background-color: #f4f4f4;
}
.container {
text-align: center;
background-color: white;
padding: 20px;
border-radius: 8px;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
}
input[type="file"] {
margin-bottom: 20px;
}
button {
padding: 10px 20px;
background-color: #007bff;
color: white;
border: none;
border-radius: 5px;
cursor: pointer;
}
button:hover {
background-color: #0056b3;
}
.result {
margin-top: 20px;
font-size: 1.2em;
}
.video-feed {
margin-top: 20px;
}
</style>
</head>
<body>
<div class="container">
<h1>Upload Waste Image</h1>
<form id="upload-form" enctype="multipart/form-data">
<input type="file" id="file-input" name="file" accept="image/*" required>
<br><br>
<button type="submit">Predict</button>
</form>
<div class="result" id="result"></div>
<h1>Camera Feed</h1>
<button onclick="startVideo()">Start Video</button>
<button onclick="stopVideo()">Stop Video</button>
<div class="video-feed">
<video id="video" width="640" height="480" autoplay></video>
<canvas id="canvas" style="display:none;"></canvas>
</div>
</div>
<script>
document.getElementById('upload-form').addEventListener('submit', function(event) {
event.preventDefault();
const formData = new FormData(this);
fetch('/predict-image', {
method: 'POST',
body: formData
})
.then(response => response.json())
.then(data => {
const imgElement = document.createElement('img');
imgElement.src = 'data:image/png;base64,' + data.prediction;
document.getElementById('result').innerHTML = '';
document.getElementById('result').appendChild(imgElement);
})
.catch(error => console.error('Error:', error));
});
let videoStream;
async function startVideo() {
try {
videoStream = await navigator.mediaDevices.getUserMedia({ video: true });
const videoElement = document.getElementById('video');
videoElement.srcObject = videoStream;
videoElement.play();
setInterval(captureAndPredict, 1000); // Capture and predict every second
} catch (error) {
console.error('Error accessing camera:', error);
}
}
function stopVideo() {
if (videoStream && videoStream.getTracks().length > 0) {
videoStream.getTracks()[0].stop();
const videoElement = document.getElementById('video');
videoElement.srcObject = null;
}
}
async function captureAndPredict() {
const videoElement = document.getElementById('video');
const canvasElement = document.getElementById('canvas');
const context = canvasElement.getContext('2d');
canvasElement.width = videoElement.videoWidth;
canvasElement.height = videoElement.videoHeight;
context.drawImage(videoElement, 0, 0, canvasElement.width, canvasElement.height);
const imageData = canvasElement.toDataURL('image/png');
const blob = await fetch(imageData).then(res => res.blob());
const formData = new FormData();
formData.append('file', blob, 'captured.png');
fetch('/predict-image', {
method: 'POST',
body: formData
})
.then(response => response.json())
.then(data => {
console.log('Prediction:', data.prediction);
})
.catch(error => console.error('Error:', error));
}
</script>
</body>
</html>
UI界面 (PyQt5)
src/ui_app.py
文件
运行项目
-
启动Flask服务器:
python src/app.py
-
启动PyQt5 UI应用:
python src/ui_app.py
解释
- 数据预处理: 使用YOLOv8进行目标检测。
- 模型预测: 提供图像预测和视频流预测功能。
- Flask应用: 提供一个简单的Web界面用于上传图像和实时视频流预测。
- PyQt5 UI应用: 提供一个图形化的用户界面用于上传图像和实时视频流预测。
通过这些步骤,你可以构建一个完整的垃圾检测识别系统,包括预测、前端和服务端代码。