配置文件解读
-
数据路径:
•train
: 训练集路径,指向pets/train/images
。
•val
: 验证集路径,指向pets/val/images
。
•test
: 测试集路径被注释掉了,可能是你尚未准备好测试集,或者不需要测试集。 -
类别数量:
•nc: 24
,表示你的数据集中有24个类别。
-
类别名称:
•names
列表中列出了24种昆虫的名称,包括:
◦Bollworm
(棉铃虫)
◦Meadow borer
(草地螟)
◦Gryllotalpa orientalis
(东方蝼蛄)
◦Agriotes fuscicollis Miwa
(一种金龟子)
◦Nematode trench
(线虫沟)
◦Athetis lepigone
(甘蓝夜蛾)
◦Little Gecko
(小壁虎,可能是误写,应该不是昆虫)
◦Scotogramma trifolii Rottemberg
(三叶草夜蛾)
◦Armyworm
(草地贪夜蛾)
◦Spodoptera cabbage
(甘蓝夜蛾)
◦Anomala corpulenta
(铜绿丽金龟)
◦Spodoptera exigua
(小菜蛾)
◦Plutella xylostella
(菜青虫)
◦holotrichia parallela
(平行蝼蛄)
◦Rice planthopper
(稻飞虱)
◦Land tiger
(地老虎)
◦Yellow tiger
(黄地老虎)
◦eight-character tiger
(八字地老虎)
◦holotrichia oblita
(一种蝼蛄)
◦Stem borer
(茎螟)
◦Striped rice bore
(条纹螟)
◦Spodoptera litura
(斜纹夜蛾)
◦Rice Leaf Roller
(稻纵卷叶螟)
◦Melahotus
(可能是某种昆虫,但名称不明确)。
-
问题点:
•Little Gecko
并不是昆虫,可能是数据标注错误,建议检查并移除。
•Melahotus
名称不明确,建议确认其是否为有效分类。
•test
数据集路径被注释掉了,如果需要测试模型性能,建议补充测试集。
项目建议
-
数据预处理:
• 确保每张图片的标注文件(如.txt
文件)与图片一一对应,且标注格式符合YOLOv11的要求。
• 检查是否有错误标注的类别(如Little Gecko
)。
• 如果类别数量较多(如24类),建议对数据进行平衡处理,避免某些类别样本过少。 -
模型训练:
• 使用YOLOv11进行训练时,建议从预训练模型开始(如COCO预训练权重),以加速收敛。
• 设置合适的超参数,如学习率(lr
)、批量大小(batch-size
)等。
• 如果显存不足,可以尝试减小输入图片的分辨率。 -
类别名称修正:
• 确保names
列表中的类别名称准确无误。
• 如果Melahotus
是无效分类,建议移除或替换为正确的名称。 -
测试集准备:
• 如果没有测试集,可以从训练集中划分一部分作为验证集,或者收集新的测试数据。
-
模型评估:
• 使用YOLOv11提供的评估工具(如mAP、F1分数等)对模型性能进行评估。
• 如果某些类别的检测效果较差,可以尝试数据增强(如旋转、翻转、亮度调整等)来提升模型的泛化能力。 -
部署与应用:
• 如果项目需要部署到实际场景中,可以考虑将模型转换为ONNX或TensorRT格式以提升推理速度。
• 结合硬件设备(如NVIDIA Jetson系列)进行实时检测。
示例代码(YOLOv11训练命令)
python train.py --data your_data.yaml --weights yolov11n.pt --epochs 300 --batch-size 16 --img-size 640
• your_data.yaml
是你的配置文件。
• yolov11n.pt
是YOLOv11的预训练权重。
• --epochs 300
表示训练300个epoch。
• --batch-size 16
表示每次训练的批量大小。
• --img-size 640
表示输入图片的分辨率为640x640。