yolo11灯光诱捕农业害虫昆虫分类与识别检测项目


配置文件解读

  1. 数据路径
    train: 训练集路径,指向 pets/train/images
    val: 验证集路径,指向 pets/val/images
    test: 测试集路径被注释掉了,可能是你尚未准备好测试集,或者不需要测试集。

  2. 类别数量
    nc: 24,表示你的数据集中有24个类别。
    在这里插入图片描述

  3. 类别名称
    names 列表中列出了24种昆虫的名称,包括:
    Bollworm(棉铃虫)
    Meadow borer(草地螟)
    Gryllotalpa orientalis(东方蝼蛄)
    Agriotes fuscicollis Miwa(一种金龟子)
    Nematode trench(线虫沟)
    Athetis lepigone(甘蓝夜蛾)
    Little Gecko(小壁虎,可能是误写,应该不是昆虫)
    Scotogramma trifolii Rottemberg(三叶草夜蛾)
    Armyworm(草地贪夜蛾)
    Spodoptera cabbage(甘蓝夜蛾)
    Anomala corpulenta(铜绿丽金龟)
    Spodoptera exigua(小菜蛾)
    Plutella xylostella(菜青虫)
    holotrichia parallela(平行蝼蛄)
    Rice planthopper(稻飞虱)
    Land tiger(地老虎)
    Yellow tiger(黄地老虎)
    eight-character tiger(八字地老虎)
    holotrichia oblita(一种蝼蛄)
    Stem borer(茎螟)
    Striped rice bore(条纹螟)
    Spodoptera litura(斜纹夜蛾)
    Rice Leaf Roller(稻纵卷叶螟)
    Melahotus(可能是某种昆虫,但名称不明确)。
    在这里插入图片描述

  4. 问题点
    Little Gecko 并不是昆虫,可能是数据标注错误,建议检查并移除。
    Melahotus 名称不明确,建议确认其是否为有效分类。
    test 数据集路径被注释掉了,如果需要测试模型性能,建议补充测试集。


在这里插入图片描述

项目建议

  1. 数据预处理
    • 确保每张图片的标注文件(如 .txt 文件)与图片一一对应,且标注格式符合YOLOv11的要求。
    • 检查是否有错误标注的类别(如 Little Gecko)。
    • 如果类别数量较多(如24类),建议对数据进行平衡处理,避免某些类别样本过少。

  2. 模型训练
    • 使用YOLOv11进行训练时,建议从预训练模型开始(如COCO预训练权重),以加速收敛。
    • 设置合适的超参数,如学习率(lr)、批量大小(batch-size)等。
    • 如果显存不足,可以尝试减小输入图片的分辨率。

  3. 类别名称修正
    • 确保 names 列表中的类别名称准确无误。
    • 如果 Melahotus 是无效分类,建议移除或替换为正确的名称。

  4. 测试集准备
    • 如果没有测试集,可以从训练集中划分一部分作为验证集,或者收集新的测试数据。
    在这里插入图片描述

  5. 模型评估
    • 使用YOLOv11提供的评估工具(如mAP、F1分数等)对模型性能进行评估。
    • 如果某些类别的检测效果较差,可以尝试数据增强(如旋转、翻转、亮度调整等)来提升模型的泛化能力。

  6. 部署与应用
    • 如果项目需要部署到实际场景中,可以考虑将模型转换为ONNX或TensorRT格式以提升推理速度。
    • 结合硬件设备(如NVIDIA Jetson系列)进行实时检测。


在这里插入图片描述

示例代码(YOLOv11训练命令)

python train.py --data your_data.yaml --weights yolov11n.pt --epochs 300 --batch-size 16 --img-size 640

your_data.yaml 是你的配置文件。
yolov11n.pt 是YOLOv11的预训练权重。
--epochs 300 表示训练300个epoch。
--batch-size 16 表示每次训练的批量大小。
--img-size 640 表示输入图片的分辨率为640x640。


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值