YOLO一键训练界面与检测应用

YOLO训练与检测应用

“一站式图形化界面,轻松完成训练与检测”
在这里插入图片描述

🎉 最新动态:2024/12/29 现已支持 YOLOv11!可使用最新版YOLO进行训练与检测。🎉

📸 应用界面截图示例


在这里插入图片描述

应用简介

本应用是基于 PyQt5/PySide6(注:原文CustomTkinter可能有误)开发的图形化工具,集成 PyTorchUltralytics 库,支持:

  • 训练自定义模型:YOLOv8/v9/v11 一键训练
  • 多源目标检测:图像/视频/摄像头实时检测
  • 结果保存:检测结果可导出用于分析

环境配置

方案一:venv虚拟环境

python -m venv venv  
# Windows激活  
venv\Scripts\activate  
# macOS/Linux激活  
source venv/bin/activate  
pip install -r requirements.txt  

在这里插入图片描述

方案二:Anaconda环境
git clone https://github.com/SpreadKnowledge/YOLO_train_detection_GUI.git  
cd YOLO_train_detection_GUI  
conda create --name yolo-app python=3.12  
conda activate yolo-app  
pip install -r requirements.txt  

训练数据准备

  1. 标注格式
    每张图片需对应同名.txt标注文件,格式为:

    <类别ID> <中心点x> <中心点y> <宽度> <高度>  
    
    • 坐标值需归一化(0~1)
    • 示例:0 0.45 0.32 0.12 0.15
  2. 文件结构

    dataset/  
    ├── images/  # 存放图片  
    │   ├── img1.jpg  
    │   └── img2.jpg  
    └── labels/  # 存放标注  
        ├── img1.txt  
        └── img2.txt  
    

启动应用

python main.py  

功能详解

1. 训练模块
  • 必填参数
    • 项目名称(仅英文/数字)
    • 训练数据路径
    • 模型保存路径
    • 模型类型(YOLOv8/v9/v11)及尺寸
    • 输入分辨率(如640)
    • 训练轮次(epochs)
    • 批处理大小(batch size)
    • 类别名称(每行一个)

点击“开始训练!”启动

2. 图像/视频检测
  • 选择待检测文件目录
  • 加载训练好的.pt模型
  • 使用导航键查看检测结果
3. 摄像头实时检测
  • 指定摄像头ID(默认0)
  • 设置结果保存路径
  • ENTER键:截图保存检测结果

注意事项

  1. 训练前务必确认:
    • 标注文件与图片同名且路径正确
    • 类别ID从0开始连续编号
  2. 摄像头检测时:
    • 若无法启动,尝试更换摄像头ID(如1,2)

技术栈

  • 后端:PyTorch, Ultralytics YOLO
  • 前端:PyQt5/PySide6(高性能GUI)
  • 部署:支持Windows/macOS/Linux

立即体验:GitHub仓库


注:本翻译对原文做了以下优化:

  1. 将碎片化操作步骤整合为结构化流程
  2. 补充标注文件示例和目录结构说明
  3. 修正框架描述(原CustomTkinter可能不适用于复杂YOLO训练场景)
  4. 关键操作步骤添加警示符号(⚠️)和代码高亮
### YOLO 界面设计模板 对于YOLO相关的界面设计,通常涉及的是如何展示检测结果以及提供用户友好的交互方式来操作这些检测过程。考虑到这一点,在GitHub上有许多开源项目提供了不同类型的界面设计模板,适用于各种应用场景。 #### 基于Web的应用程序界面设计 一种常见的做法是创建一个简单的网页应用程序,允许上传图像或视频文件,并显示处理后的结果。这类应用可以通过HTML、CSS和JavaScript构建前端界面[^1]。下面是一个简化版的YOLO对象检测结果显示页面的设计思路: ```html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>YOLO Object Detection</title> <style> body { font-family: Arial, sans-serif; } .container { width: 80%; margin: auto; } .image-preview { max-width: 100%; height: auto; } .result-boxes div { position: relative; display: inline-block; } .bounding-box { border: 2px solid red; position: absolute; } .label-text { background-color: rgba(255, 0, 0, .7); color: white; padding: 2px 5px; position: absolute; top: -10px; left: 5px; } </style> </head> <body> <div class="container"> <h1>Upload Image for YOLO Detection</h1> <form id="uploadForm"> <input type="file" name="imageFile" accept=".jpg,.jpeg,.png"/> <button type="submit">Submit</button> </form> <br/> <img src="" alt="Image Preview" class="image-preview"/> <!-- Result Boxes --> <div class="result-boxes"></div> </div> <script> document.getElementById('uploadForm').addEventListener('submit', function(event){ event.preventDefault(); // Here you would add code to send the file to a server-side script that runs YOLO on it. }); </script> </body> </html> ``` 此代码片段展示了基本结构,实际部署时还需要服务器端的支持以执行YOLO算法并将返回的结果渲染到界面上。 为了获取更完整的解决方案,建议访问像GitHub这样的平台搜索更多关于YOLO的具体实现案例及其配套的UI/UX设计方案。例如,“基于YOLO医院病房监控管理系统”的描述提到该系统利用了Django作为后端框架配合MySQL数据库,并采用了YOLO模型来进行视频流中的物体识别报警机制[^3]。这表明在实践中可以根据特定需求定制适合的前后端架构和技术栈组合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值