基于YOLO11的车身损伤检测模型与汽车缺陷碰撞检测

基于YOLO11m的车身损伤检测模型 (YOLO11m-Car-Damage-Detector

)
本深度学习/AI视觉检测器采用YOLO11m架构,通过专业数据集微调训练(trained.pt),可精准识别六类常见车身损伤:凹陷、划痕、裂纹、车灯破损、玻璃碎裂及轮胎漏气。该大容量模型兼顾速度与精度,专为实际检测场景优化。
在这里插入图片描述

▍模型概览
架构:YOLO11m(231层,约2000万参数)
数据集:CarDD_COCO(定制微调版)
训练环境:Google Colab(NVIDIA L4 GPU/22GB显存)
检测类别:凹陷/划痕/裂纹/玻璃碎裂/车灯破损/轮胎漏气
训练框架:Ultralytics 8.3.117 + PyTorch 2.6.0+cu124 + Python 3.11.12

在这里插入图片描述

▍性能速览
各类别战术分析:

类别框选精度§召回率®mAP50mAP50-95
玻璃碎裂0.9790.9780.9940.963
轮胎漏气0.9430.9190.9590.932
车灯破损0.8260.8210.8950.796
凹陷0.8320.5200.6920.568
划痕0.7370.8000.9050.610
裂纹0.6990.5860.6200.424

▍战术亮点
• 玻璃碎裂:顶级表现——各项指标接近完美
• 轮胎漏气:优异——检测稳定可靠
• 车灯破损:强力——精度与一致性俱佳
• 凹陷/划痕/裂纹:相对薄弱——存在漏检与定位偏移(尤其裂纹)

▍示例输出
在这里插入图片描述

▍应用场景
本模型作为辅助工具(非替代人工),适用于:
• 加速目视检查流程
• 标记易被忽视的损伤
• 保障高吞吐量作业的一致性
具体场景包括:

  • 预借出车辆检测(如宝马4S店已部署增强版)
  • 维修中心损伤记录
  • 车队状况审计
  • 保险理赔前影像评估
  • 租车归还验收
    在这里插入图片描述

▍真实案例:宝马预借出车辆检测
增强版模型已应用于宝马服务体系:

  1. 技师拍摄车辆外观
  2. 模型自动标记可见损伤
  3. 检测结果映射至标准车身示意图
  4. 服务顾问人工复核报告
    价值体现:
    ✓ 减少疏漏 ✓ 降低误报
    ✓ 加速流程 ✓ 跨网点结果可复现

▍模型文件
trained.pt —— 训练完成的模型权重
在这里插入图片描述

▍快速开始

  1. 安装Ultralytics
pip install ultralytics  
  1. 加载与推理
from ultralytics import YOLO  
model = YOLO("trained.pt")  
results = model("your_image.jpg", save=True)  
results[0].show()  # 可视化结果  

注:本模型为辅助工具,旨在提升检测效率与一致性,最终需人工确认。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值