基于YOLO11m的车身损伤检测模型 (YOLO11m-Car-Damage-Detector
)
本深度学习/AI视觉检测器采用YOLO11m架构,通过专业数据集微调训练(trained.pt),可精准识别六类常见车身损伤:凹陷、划痕、裂纹、车灯破损、玻璃碎裂及轮胎漏气。该大容量模型兼顾速度与精度,专为实际检测场景优化。
▍模型概览
架构:YOLO11m(231层,约2000万参数)
数据集:CarDD_COCO(定制微调版)
训练环境:Google Colab(NVIDIA L4 GPU/22GB显存)
检测类别:凹陷/划痕/裂纹/玻璃碎裂/车灯破损/轮胎漏气
训练框架:Ultralytics 8.3.117 + PyTorch 2.6.0+cu124 + Python 3.11.12
▍性能速览
各类别战术分析:
类别 | 框选精度§ | 召回率® | mAP50 | mAP50-95 |
---|---|---|---|---|
玻璃碎裂 | 0.979 | 0.978 | 0.994 | 0.963 |
轮胎漏气 | 0.943 | 0.919 | 0.959 | 0.932 |
车灯破损 | 0.826 | 0.821 | 0.895 | 0.796 |
凹陷 | 0.832 | 0.520 | 0.692 | 0.568 |
划痕 | 0.737 | 0.800 | 0.905 | 0.610 |
裂纹 | 0.699 | 0.586 | 0.620 | 0.424 |
▍战术亮点
• 玻璃碎裂:顶级表现——各项指标接近完美
• 轮胎漏气:优异——检测稳定可靠
• 车灯破损:强力——精度与一致性俱佳
• 凹陷/划痕/裂纹:相对薄弱——存在漏检与定位偏移(尤其裂纹)
▍示例输出
▍应用场景
本模型作为辅助工具(非替代人工),适用于:
• 加速目视检查流程
• 标记易被忽视的损伤
• 保障高吞吐量作业的一致性
具体场景包括:
- 预借出车辆检测(如宝马4S店已部署增强版)
- 维修中心损伤记录
- 车队状况审计
- 保险理赔前影像评估
- 租车归还验收
▍真实案例:宝马预借出车辆检测
增强版模型已应用于宝马服务体系:
- 技师拍摄车辆外观
- 模型自动标记可见损伤
- 检测结果映射至标准车身示意图
- 服务顾问人工复核报告
价值体现:
✓ 减少疏漏 ✓ 降低误报
✓ 加速流程 ✓ 跨网点结果可复现
▍模型文件
trained.pt —— 训练完成的模型权重
▍快速开始
- 安装Ultralytics
pip install ultralytics
- 加载与推理
from ultralytics import YOLO
model = YOLO("trained.pt")
results = model("your_image.jpg", save=True)
results[0].show() # 可视化结果
注:本模型为辅助工具,旨在提升检测效率与一致性,最终需人工确认。