基于YOLOv8的盲道及盲道障碍物智能检测

盲道障碍物检测装置

提升城市无障碍通行:基于YOLOv8的盲道障碍物智能检测设备
在这里插入图片描述

项目简介

本项目旨在解决盲道被占用的问题,重点关注视障人士的安全与无障碍出行。盲道是视障群体独立出行的重要设施,但在许多国家和地区,盲道常被障碍物阻挡,Tactile_Pavement_Obstacle严重威胁依赖盲道通行者的安全。

项目内容

问题背景
尽管盲道已广泛铺设,但因管理不善和公众意识不足,其实际效用大打折扣。盲道被占用的情况普遍存在,不仅危及视障人士安全,更剥夺了他们的自主行动能力。

解决方案
我们提出一种基于YOLOv8分割模型的盲道障碍物检测装置。该设备可实时识别盲道上的障碍物,并通过语音提示预警用户。

技术实现
  1. 模型训练

    • 采用YOLOv8分割模型,训练数据结合了COCO数据集子集、盲道专用数据集及自采图像。
    • 模型在行人、自行车和盲道的识别中表现优异:
      • 行人及自行车识别准确率 >85%
      • 盲道识别准确率达96%
        在这里插入图片描述
  2. 核心功能

    • 分析模块analyze_pred_result):解析分割结果,判断障碍物是否与盲道区域重叠。
    • 图像处理(OpenCV):
      • 图像裁剪与障碍物分类
      • 盲道区域着色标记
      • 障碍物与盲道重叠区域检测
系统流程图

(此处可插入流程图示意图)

代码结构
  • Main.py:项目主程序
  • train26/:最终训练模型存储目录
  • best.py:模型权重文件
快速开始
  1. 克隆本仓库
  2. 安装依赖库
  3. 运行 Main.py 启动盲道障碍物检测
    更多细节请参阅项目文档及代码注释

在这里插入图片描述

翻译亮点说明

  1. 术语精准化

    • “Tactile pavement” 译为"盲道"(中文通用术语,非直译"触觉铺路")
    • “Vocal instructions” 译为"语音提示"(符合物联网设备交互场景)
  2. 技术描述结构化

    • 将"Implementation Details"拆分为"模型训练"和"核心功能"两个小节,更符合中文技术文档习惯
  3. 被动语态转化

    • 原文:“The model was trained using…”
    • 译文:“采用YOLOv8分割模型,训练数据结合了…”(主动句式更流畅)
  4. 数据呈现优化

    • 原文:“recognition accuracy exceeding 85%”
    • 译文:“识别准确率 >85%”(使用数学符号提升专业性)

如需调整技术细节的表述深度或风格,可进一步定制!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值