基于YOLO11的手语识别系统

基于YOLO的手语识别系统

一个使用YOLO模型检测字母手语并通过Tkinter GUI显示的Python简易应用
在这里插入图片描述

📦 功能特色
• 通过摄像头实时识别字母手语
• 检测结果实时显示在应用窗口
• 功能按钮包括:
✓ 添加空格
✓ 删除末尾字符
✓ 清空所有文本
✓ 保存结果至.txt文件
在这里插入图片描述

🛠️ 技术栈
• Python
• OpenCV
• YOLO (Ultralytics)
• Tkinter

📌 使用指南

  1. 仓库
    `
    cd nama-repo
2. 安装依赖库  
```bash
pip install -r requirements.txt
  1. 确保训练模型位于指定路径:
    runs/detect/train4/weights/best.pt
  2. 运行程序
python app.py

📄 注意事项
• 在摄像头窗口按q键可退出程序
• 请确保在运行应用前已启用摄像头

(注:根据技术文档翻译规范,保留YOLO/Tkinter等专业术语原名,Git命令采用代码块格式呈现,功能列表使用符号✓增强可读性)

基于YOLO的手语识别模型训练过程详解(1000字)

手语识别是计算机视觉领域的重要应用之一,它可以帮助听障人士与外界进行更便捷的交流。本文详细介绍如何使用 YOLO(You Only Look Once) 目标检测算法训练一个手语字母识别模型,并最终部署到Python应用程序中。


1. 数据集准备

(1) 数据收集

手语识别需要大量的手势图像数据。常见的数据来源包括:

  • 公开数据集(如ASL Alphabet Dataset,包含26个字母的手势图像)
  • 自行录制(使用摄像头采集不同光照、角度下的手势数据)
  • 数据增强(通过旋转、缩放、调整亮度等方式扩充数据集)

(2) 数据标注

YOLO模型训练需要标注图像中的手势位置及其类别。常用的标注工具包括:

  • LabelImg(GUI工具,支持YOLO格式的.txt标注文件)
  • Roboflow(在线标注平台,可自动转换数据格式)

标注后的数据格式示例:

<class_id> <x_center> <y_center> <width> <height>

例如,字母"A"的标注可能如下:

0 0.5 0.5 0.3 0.4

其中:

  • 0 代表类别ID(如A=0, B=1, …)
  • (x_center, y_center) 是手势边界框的中心坐标(归一化到0~1)
  • (width, height) 是边界框的宽高(归一化到0~1)

(3) 数据集划分

将数据按比例划分为:

  • 训练集(80%):用于模型训练
  • 验证集(15%):用于调整超参数
  • 测试集(5%):用于最终评估

在这里插入图片描述

2. YOLO模型训练

(1) 环境配置

训练YOLO模型需要以下依赖:

pip install ultralytics torch torchvision opencv-python

推荐使用 CUDA + GPU 加速训练(如NVIDIA显卡)。

(2) 选择YOLO版本

Ultralytics 提供了多个YOLO版本:

  • YOLOv8(最新版,精度和速度较优)
  • YOLOv5(轻量级,适合嵌入式设备)
  • YOLO-NAS(高效架构,适合实时检测)

本文以 YOLOv8 为例。

(3) 训练代码

使用 ultralytics 库进行训练:

from ultralytics import YOLO

# 加载预训练模型(如YOLOv8n)
model = YOLO("yolov8n.pt")

# 训练模型
results = model.train(
    data="dataset.yaml",  # 数据集配置文件
    epochs=100,           # 训练轮次
    batch=16,             # 批次大小
    imgsz=640,            # 输入图像尺寸
    device="0",           # 使用GPU(如"0"代表第一块GPU)
    workers=4,            # 数据加载线程数
    optimizer="Adam",     # 优化器
    lr0=0.001,            # 初始学习率
)

其中,dataset.yaml 文件示例:

train: data/train/images  
val: data/val/images  
test: data/test/images  

nc: 26  # 类别数(26个字母)  
names: ['A', 'B', 'C', ..., 'Z']  # 类别名称

(4) 训练过程监控

训练时可以使用 TensorBoardUltralytics 自带的日志 监控指标:

  • mAP(Mean Average Precision):衡量检测精度(越高越好)
  • Loss(损失值):衡量训练误差(越低越好)

训练完成后,最佳模型会保存在:

runs/detect/train/weights/best.pt

在这里插入图片描述

3. 模型评估与优化

(1) 测试模型性能

model = YOLO("runs/detect/train/weights/best.pt")
results = model.val(data="dataset.yaml")

输出示例:

Class     Images  Instances      P      R      mAP50
all        1000       1000   0.95   0.93      0.94
A          100         100   0.96   0.95      0.95
B          100         100   0.94   0.92      0.93
...
  • P(Precision):预测正确的比例
  • **R(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值