鲸鱼迁徙优化算法(WMA)-2025年3月最新算法-公式原理详解与性能测评 Matlab代码免费获取

        声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~

目录

原理简介

一、初始化

二、海洋中迁徙鲸鱼的当前位置

三、经验较少的鲸鱼(幼鲸)向最近的邻居移动

四、经验较少的鲸鱼由经验丰富的鲸鱼(领导者)引导

五、由经验丰富的鲸鱼或领导者发现和搜索新领域

算法流程图和伪代码

性能测评

参考文献

完整代码


鲸鱼迁徙优化算法(Whale Migrating Algorithm, WMA)是一种新型的元启发式算法(智能优化算法),灵感来源于座头鲸的协作和迁徙行为。该算法结构清晰,代码简洁,适合大家改进与对比!该成果由Mojtaba Ghasemi于2025年3月发表在ESCI期刊《Results in Engineering上!

由于发表时间较短,谷歌学术上还没人引用!你先用,你就是创新!

原理简介

灵感:作为世界上迁徙时间最长的哺乳动物之一,它们每年跨越巨大的距离。有些群体从温暖的地区旅行超过7000公里,在那里它们可以安全地繁殖,到凉爽的地区,在那里它们可以找到更多的食物。

一、初始化

迁徙鲸鱼的群体是在下限L和上限U之间随机产生的,通过等式(4)给定问题搜索空间。这个初始生产种群扮演一群迁徙鲸鱼的角色。

其中,函数(1,D)从维度D的区间[0,1]生成随机数的向量,并且运算n表示两个向量的Hadamard积,其中,通过将两个原始向量的对应元素相乘来获得结果向量的每个元素。

二、海洋中迁徙鲸鱼的当前位置

在每一群迁徙的鲸鱼中,经验更丰富的个体具有上级位置知识和更高的目标函数值,引导和指导群体,将其他鲸鱼引向目的地。在所提出的WMA算法中,有参数NL,它代表经验更丰富的鲸鱼(领导者)的数量,由具有更好和上级位置和目标函数值的成员组成。考虑到我们想要通过目标函数中的单个点来描述整个迁移鲸鱼群在任何给定时间的实际位置,因此,在本文中,我们将WMean设置为当前NL领导者位置的平均值,即:

三、经验较少的鲸鱼(幼鲸)向最近的邻居移动

假设所有种群成员(鲸鱼)都按照适应值(或目标函数值)和/或它们的位置(或者,等价地,鲸鱼的经验值)降序排列:

其中,W1是最佳成员(在下文中,表示为WBest),而WNpop是最差成员。

四、经验较少的鲸鱼由经验丰富的鲸鱼(领导者)引导

整个迁徙鲸鱼群在海洋中的当前位置被假设为等于所有更有经验的鲸鱼的当前位置的平均值WMean。如果点W平均和W最佳之间的距离开始缩短,则整个迁徙鲸鱼群正在接近WBest。在这种情况下,当然,经验较少的鲸鱼(幼鲸)也必须开始向矢量(1,D)的方向移动。其中(1,D)是来自问题D的维度的区间[0,1]的随机数的向量,将其加到运动方程(7)中:

应当注意,仅当f(Wnewi)小于f(Wi)时,新位置Wnewi才替换当前位置Wi。

五、由经验丰富的鲸鱼或领导者发现和搜索新领域

在一群迁徙的鲸鱼中,更有经验的个体,被称为领导者,负责识别和选择到达目的地的最佳路线。根据下面的运动学方程,第i头鲸会寻找这条到达目的地的合适路径:

其中r1和r2是来自区间[0,1]的随机数的向量,维度为D,L表示位置(即位置)向量,U-L是相对方向向量。应当注意,仅当f(Wnewi)小于f(Wi)时,新位置Wnewi才替换当前位置Wi。在WMA的每次迭代结束时,移民鲸的群体从最好到最差排序,所有NL最好的成员被选为领导者。

算法流程图和伪代码

为了使大家更好地理解,这边给出作者算法的流程图和伪代码,非常清晰!

如果实在看不懂,不用担心,可以看下源代码,再结合上文公式理解就一目了然了!

性能测评

原文作者在CEC2005、CEC-2014和CEC2017优化问题和一些带约束的工程问题上,相对于领先的优化技术,如PSO、WOA和GWO,表现出更高的精度、鲁棒性和收敛速度。

这边为了方便大家对比与理解,采用23个标准测试函数,即CEC2005,设置种群数量为30,迭代次数为1000,和经典的正余弦优化算法SCA进行对比!这边展示其中5个测试函数的图,其余十几个测试函数大家可以自行切换尝试!

可以看到,这个算法在大部分函数上均优于经典的正余弦优化算法算法,说明该算法性能还是比较不错的!大家应用到各类预测、优化问题中也是一个不错的选择~

参考文献

[1]Ghasemi M, Deriche M, Trojovský P, et al. An efficient bio-inspired algorithm based on humpback whale migration for constrained engineering optimization[J]. Results in Engineering, 2025: 104215.

完整代码

如果需要免费获得图中的完整测试代码,只需点击下方小卡片,再后台回复关键字,不区分大小写:

WMA

也可点击下方小卡片,再后台回复个人需求(比如WMA-SVM)定制以下WMA算法优化模型(看到秒回):

1.回归/时序/分类预测类:SVM、RVM、LSSVM、ELM、KELM、HKELM、DELM、RELM、DHKELM、RF、SAE、LSTM、BiLSTM、GRU、BiGRU、PNN、CNN、BP、XGBoost、LightGBM、TCN、BiTCN、ESN、Transformer等等均可~

2.组合预测类:CNN/TCN/BiTCN/DBN/Transformer/Adaboost结合SVM、RVM、ELM、LSTM、BiLSTM、GRU、BiGRU、Attention机制类等均可(可任意搭配非常新颖)~

3.分解类:EMD、EEMD、VMD、REMD、FEEMD、TVFEMD、CEEMDAN、ICEEMDAN、SVMD、FMD等分解模型均可~

4.路径规划类:机器人路径规划、无人机三维路径规划、冷链物流路径优化、VRPTW路径优化等等~

5.优化类:光伏电池参数辨识优化、光伏MPPT控制、储能容量配置优化、微电网优化、PID参数整定优化、无线传感器覆盖优化、图像分割、故障诊断、车间调度等等均可~~

6.原创改进优化算法(适合需要创新的同学):原创改进2025年的鲸鱼迁徙优化算法WMA以及鱼鹰OOA、蛇鹫SBOA等任意优化算法均可,保证测试函数效果,一般可直接核心!

内容概要:本文介绍了使用Matlab实现鲸鱼算法(WOA)优化Transformer-LSTM组合模型进行多变量回归预测的详细项目实例。项目背景强调了随着AI和大数据技术的发展,多变量回归预测在金融市场、医疗健康、交通管理等领域的关键作用。文章指出传统回归方法难以捕捉复杂非线性关系,而结合LSTM和Transformer的深度学习方法能有效处理时间序列数据,但需要优化以提升预测精度。为此,引入鲸鱼算法优化模型参数,以提高全局搜索能力,避免局部最优解。项目通过数据预处理、构建Transformer-LSTM模型及鲸鱼算法优化,展示了模型的训练优化过程,并通过效果预测图程序设计验证了模型的优化效果。; 适合人群:具备一定编程基础,特别是对深度学习和优化算法有一定了解的研发人员和数据科学家。; 使用场景及目标:①在金融市场、医疗健康、交通管理、能源需求预测和环境监测等领域,利用多变量回归预测模型进行数据分析和预测;②通过优化Transformer-LSTM组合模型,提高预测任务中的准确性和稳定性;③结合LSTM和Transformer的优点,增强模型对复杂非线性关系的学习能力;④通过鲸鱼算法优化,提升模型的全局搜索能力和泛化能力。; 其他说明:项目不仅展示了模型的理论架构和实现细节,还提供了详细的代码示例,包括数据加载预处理、模型构建训练、鲸鱼算法优化等。此外,通过绘制效果预测图,直观展示了优化前后模型的预测性能对比,便于理解和评估模型优化效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值