声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~
目录
神教优化算法(Divine Religions Algorithm, DRA)是一种新型的元启发式算法(智能优化算法),灵感来源于宗教社会。该算法模拟了追随者、传教士和领导者之间的互动,性能不错,值得一试!该成果由Ali Toufanzadeh Mozhdehi等人于2025年2月发表在SCI期刊《Cluster Computing》上!
由于发表时间较短,谷歌学术上还没人引用!你先用,你就是创新!
原理简介
灵感:该算法从政治-宗教框架中汲取灵感,通过对争取宗教声望的领导者和寻求增强其信仰的追随者进行建模来解决优化挑战。就像领导者寻找与其宗教信仰一致的虔诚追随者一样,该算法的目标是在一个目标函数的指导下找到最优的解决方案。每个追随者的有效性是由他们的政治和宗教观点的强度来衡量的。
一、在社区中分配传教士
与其他生物启发式元启发式算法类似,DRA的种群进化和迭代优化规则都是基于种群的初始化来实现的:
二、找出最突出的追随者
所提出的算法将具有最佳信念值的追随者识别为最突出的追随者。为此,它找到在所有社区中具有最大适应度的追随者wi^,如下所示:
其中,j^表示最突出的追随者wi^所在的社区。现在,他/她的信念简档表示如下:
请注意,传教士的选择与上述过程类似,只是选择是局部的而不是全局的。换句话说,对应于社区mj的传教士是在该社区中具有最高适应度的人。传教士的简档由C^j表示。
三、吸引新的追随者
在将该新个体纳入前,算法会根据一定概率执行“选拔”或“奇迹”这两类算子,从而调整该个体的信仰值。若生成的随机数在“信仰选择概率”(Belief Profile Selection Probability,BPSP)之内,则会执行选拔,否则再根据另一随机数判断是否执行奇迹算子:
①选择运算符:正如在现实世界的人类社区中常见的那样,吸引新的追随者需要一组最低级别的信念。然而,有时候,在一个或多个特征中具有非凡信念的申请人会引起注意。为了让我们的模型捕捉这种行为,必须随机选择位于同一社区mj的最突出追随者wi ^的特征之一。因此,我们选择一个在区间[1,d]中具有均匀分布的随机整数值。这个值,我们用d表示,计算如下:
我们必须将新输入的follower wi的第d个属性替换为最突出的followerwi ^i中的相应属性。所以我们写作:
②奇迹运算符:宗教领袖可以用他们非凡的能力创造奇迹来吸引新的追随者。这些奇迹可以导致不同信仰的新追随者加入社区。
这使得当前信徒的宗教信仰得到改善,并在宗教社会中获得更好的表现和地位。为此,在区间[0,1]中生成一个随机数来执行奇迹。然后,生成的随机数与同样在区间[0,1]内的奇迹概率(MP)阈值进行比较,根据以下公式计算其中一个信徒对应的信仰值,或者以随机宗教信仰值为社区添加一个新的信徒。
③传教运算符:在这个阶段,一个宗教传教士试图把其他人带到同样的信仰水平。这是可以有效地达到全局最优的利用阶段。根据每个宗教传教士提供的训练,追随者试图通过改变他们的特征来达到他/她相似的信仰。为此,在区间[0,1]生成并与MP阈值进行比较。追随者选择特征根据以下公式为奇迹和改宗算子赋值:
完成对新追随者信仰的上述操作后,重新计算其适应度,进而与宗教中最差(适应度最小)的现有追随者进行比较。若该新追随者胜出(其适应度更高),则将他与原群体中最差的追随者互换:
四、奖惩算子
为了在追随者之间创造一种竞争的气氛,一些追随者被随机地或根据表现来识别,并被奖励或惩罚。这可以导致追随者的表现水平的提高。为此,首先,使用区间[0,1]中的随机数来执行奖励或惩罚运算符。然后将该值与RP进行比较。现在,基于具有均匀分布的随机数来设置所选跟随者的对应属性之一的值,如下所示:
五、更新追随者的信念档案
替换是用最弱的追随者的信念向量或追随者的重复信念向量来完成的。随着个体信仰的改进,可能出现有追随者的适应度超过所属宗教的传教士。此时,通过“传教士替换”算子,会令原传教士与更优秀的追随者交换身份,从而使得宗教中的领导者始终保持最优解:
当更新完所有宗教与个体后,算法检查是否达到停止条件:例如,预设的最大迭代次数已到,或本轮迭代后整体适应度不再变化。若未满足停止条件,算法进入下一轮,在每个宗教中继续吸纳新追随者、进行奇迹、选拔、奖励或惩罚、并动态调整最优解。
算法流程图和伪代码
为了使大家更好地理解,这边给出作者算法的流程图和伪代码,非常清晰!
如果实在看不懂,不用担心,可以看下源代码,再结合上文公式理解就一目了然了!
性能测评
原文作者采用23个标准测试函数对DRA算法进行了评估,还采用了五个实际优化问题来证明DRA在处理约束工程问题方面的优越性。结果表明,DRA明显优于其他方法,证明了其在解决复杂优化问题方面的有效性。
这边为了方便大家对比与理解,采用23个标准测试函数,即CEC2005,设置种群数量为30,迭代次数为1000,和2024年新出的鹅优化算法进行对比!这边展示其中5个测试函数的图,其余十几个测试函数大家可以自行切换尝试!
可以看到,这个算法在前几个函数上收敛非常快,几乎超过了其他所有算法!大家应用到各类预测、优化问题中也是一个不错的选择~
参考文献
[1]Mozhdehi A T, Khodadadi N, Aboutalebi M, et al. Divine Religions Algorithm: a novel social-inspired metaheuristic algorithm for engineering and continuous optimization problems[J]. Cluster Computing, 2025, 28(4): 253.
完整代码
如果需要免费获得图中的完整测试代码,只需点击下方小卡片,再后台回复关键字,不区分大小写:
DRA
也可点击下方小卡片,再后台回复个人需求(比如DRA-CNN-LSTM-Attention)付费定制以下DRA算法优化模型(看到秒回):
1.回归/时序/分类预测类:SVM、RVM、LSSVM、ELM、KELM、HKELM、DELM、RELM、DHKELM、RF、SAE、LSTM、BiLSTM、GRU、BiGRU、PNN、CNN、BP、XGBoost、LightGBM、TCN、BiTCN、ESN、Transformer等等均可~
2.组合预测类:CNN/TCN/BiTCN/DBN/Transformer/Adaboost结合SVM、RVM、ELM、LSTM、BiLSTM、GRU、BiGRU、Attention机制类等均可(可任意搭配非常新颖)~
3.分解类:EMD、EEMD、VMD、REMD、FEEMD、TVFEMD、CEEMDAN、ICEEMDAN、SVMD、FMD等分解模型均可~
4.路径规划类:机器人路径规划、无人机三维路径规划、冷链物流路径优化、VRPTW路径优化等等~
5.优化类:光伏电池参数辨识优化、光伏MPPT控制、储能容量配置优化、微电网优化、PID参数整定优化、无线传感器覆盖优化、图像分割、故障诊断、车间调度等等均可~~
6.原创改进优化算法(适合需要创新的同学):原创改进2025年的神教优化算法DRA以及鱼鹰OOA、蛇鹫SBOA等任意优化算法均可,保证测试函数效果,一般可直接核心!