基于容积卡尔曼的七自由度车辆状态估计,可估计包括纵向速度,质心侧偏角,横摆角速度,以及四个车轮角速度七个状态。
模型中第一个模块是四轮驱动电机;第二个模块是carsim输出的真实参数,包括汽车所受横向力,纵向力,驱动力矩等:第三个模块是关于ckf的车辆状态估计,可估计包括纵向速度,横摆角速度,质心侧偏角以及四个车轮角速度七个状态;第四个模块是基于dugoff计算轮胎力模块,该模块可以计算纵向力和横向力。
本模型是基于simulink与carsim联合仿真,ckf是由s function进行编写,提供相关文献和。
基于容积卡尔曼的七自由度车辆状态估计
在汽车行业中,车辆状态估计的准确性对于车辆的控制和安全非常重要。车辆状态估计指的是根据车辆传感器和模型,对车辆的状态进行估计和预测。目前,常见的车辆状态估计方法有扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)等。然而,这些方法在处理非线性系统时,容易出现精度不足或者不收敛的问题。因此,基于容积卡尔曼滤波(CKF)的车辆状态估计成为了当前领域的研究热点。
本文提出的车辆状态估计模型采用了基于容积卡尔曼滤波(CKF)的方法,通过估计纵向速度、质心侧偏角、横摆角速度和四个车轮角速度等七个状态参数来实现车辆状态估计。
该模型的第一个模块是四轮驱动电机,并实现了对车辆的加速、减速、转弯和制动等控制。第二个模块是Carsim,它可以输出汽车所受横向力、纵向力、驱动力矩等真实参数,用于车辆状态估计的输入。第三个模块是基于CKF算法的车辆状态估计模块,通过估计车辆的七个状态参数来实现车辆状态估计。最后一个模块是基于Dugoff模型的轮胎力计算模块,可以计算纵向力和横向力。
本模型基于Simulink与Carsim进行联合仿真,并通过s function编写的CKF算法实现车辆状态估计。仿真结果表明,该模型能够准确地估计车辆的状态,并能够在控制中实现良好的控制效果。
结论
基于容积卡尔曼的七自由度车辆状态估计模型,通过对车辆的七个状态参数进行估计,实现了对车辆状态的准确估计。该模型采用了Simulink与Carsim的联合仿真方式,并通过s function编写的CKF算法实现车辆状态估计。仿真结果表明,该模型能够准确地估计车辆状态,并在控制中实现了良好的控制效果。该模型的研究为车辆状态估计的领域提供了新的思路和方法,对于提高车辆控制和安全有重要的实际意义。
相关代码,程序地址:http://lanzouw.top/684460385482.html