开放词汇多目标跟踪:OVTR: End-to-End Open-Vocabulary Multiple Object Tracking with Transformer

论文作者:Jinyang Li,En Yu,Sijia Chen,Wenbing Tao

作者单位:Huazhong University of Science and Technology

论文链接:http://arxiv.org/abs/2503.10616v1

项目链接:https://github.com/jinyanglii/OVTR

内容简介:

1)方向:开放词汇多目标跟踪

2)应用:自动驾驶、智能监控、机器人感知、多目标识别与跟踪

3)背景:开放词汇多目标跟踪的目标是在训练时泛化到未见类别,使其适用于各种现实场景。然而,现有方法受限于框架结构、独立的帧级感知以及模态交互不足,导致其在开放词汇分类和跟踪方面表现受限。

4)方法:本文提出 OVTR(End-to-End Open-Vocabulary Multiple Object Tracking with Transformer),这是首个端到端的开放词汇多目标跟踪模型,能够同时建模运动、外观和类别信息。为实现稳定分类和连续跟踪,设计了 CIP(Category Information Propagation) 策略,在后续帧中建立多个高层类别信息先验。此外,引入双分支结构以增强泛化能力和深度多模态交互,并在解码器中加入保护策略以提升性能。

5)结果:实验结果表明,该方法在开放词汇多目标跟踪(MOT)基准测试上优于现有方法,同时具备更快的推理速度,并显著减少预处理需求。此外,跨数据集实验验证了其较强的适应能力。代码:https://github.com/jinyanglii/OVTR

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Qing_er爱吃山竹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值