论文作者:Jinyang Li,En Yu,Sijia Chen,Wenbing Tao
作者单位:Huazhong University of Science and Technology
论文链接:http://arxiv.org/abs/2503.10616v1
项目链接:https://github.com/jinyanglii/OVTR
内容简介:
1)方向:开放词汇多目标跟踪
2)应用:自动驾驶、智能监控、机器人感知、多目标识别与跟踪
3)背景:开放词汇多目标跟踪的目标是在训练时泛化到未见类别,使其适用于各种现实场景。然而,现有方法受限于框架结构、独立的帧级感知以及模态交互不足,导致其在开放词汇分类和跟踪方面表现受限。
4)方法:本文提出 OVTR(End-to-End Open-Vocabulary Multiple Object Tracking with Transformer),这是首个端到端的开放词汇多目标跟踪模型,能够同时建模运动、外观和类别信息。为实现稳定分类和连续跟踪,设计了 CIP(Category Information Propagation) 策略,在后续帧中建立多个高层类别信息先验。此外,引入双分支结构以增强泛化能力和深度多模态交互,并在解码器中加入保护策略以提升性能。
5)结果:实验结果表明,该方法在开放词汇多目标跟踪(MOT)基准测试上优于现有方法,同时具备更快的推理速度,并显著减少预处理需求。此外,跨数据集实验验证了其较强的适应能力。代码:https://github.com/jinyanglii/OVTR