论文作者:Gang Wu,Junjun Jiang,Kui Jiang,Xianming Liu
作者单位:Harbin Institute of Technology
论文链接:http://arxiv.org/abs/2504.04869v1
项目链接:https://github.com/Aitical/DSwinIR
内容简介:
1)方向:图像恢复
2)应用:图像恢复
3)背景:尽管近年来Transformer架构在图像处理领域取得了显著进展,但仍面临一些挑战,特别是在窗口自注意力机制中存在的有限感受野问题,导致模型难以有效聚焦于图像中的关键区域。
4)方法:本文提出了一种新的图像恢复方法——DSwinIR(Deformable Sliding Window Transformer for Image Restoration)。该方法引入了可变形滑动窗口自注意力机制,可以根据图像内容自适应调整感受野,聚焦于图像的关键区域,从而提升特征提取的效果。同时,文章提出了一种中央集成模式(central ensemble pattern),有效减少了在注意力窗口中无关内容的干扰。通过结合可变形滑动窗口Transformer和中央集成模式,DSwinIR综合了卷积神经网络(CNNs)和Transformer的优点,同时克服了它们的不足。
5)结果:通过在多个图像恢复任务上的广泛实验,DSwinIR展现了卓越的性能。例如,在图像去雨任务中,DSwinIR在SPA数据集上相较于DRSformer取得了0.66 dB的PSNR提升。在全能图像恢复任务中,相比于PromptIR,DSwinIR在三任务设置和五任务设置下,分别取得了超过0.66 dB和1.04 dB的性能提升。代码:https://github.com/Aitical/DSwinIR。