图像恢复Content-Aware Transformer for All-in-one Image Restoration

论文作者:Gang Wu,Junjun Jiang,Kui Jiang,Xianming Liu

作者单位:Harbin Institute of Technology

论文链接:http://arxiv.org/abs/2504.04869v1

项目链接:https://github.com/Aitical/DSwinIR

内容简介:

1)方向:图像恢复

2)应用:图像恢复

3)背景:尽管近年来Transformer架构在图像处理领域取得了显著进展,但仍面临一些挑战,特别是在窗口自注意力机制中存在的有限感受野问题,导致模型难以有效聚焦于图像中的关键区域。

4)方法:本文提出了一种新的图像恢复方法——DSwinIR(Deformable Sliding Window Transformer for Image Restoration)。该方法引入了可变形滑动窗口自注意力机制,可以根据图像内容自适应调整感受野,聚焦于图像的关键区域,从而提升特征提取的效果。同时,文章提出了一种中央集成模式(central ensemble pattern),有效减少了在注意力窗口中无关内容的干扰。通过结合可变形滑动窗口Transformer和中央集成模式,DSwinIR综合了卷积神经网络(CNNs)和Transformer的优点,同时克服了它们的不足。

5)结果:通过在多个图像恢复任务上的广泛实验,DSwinIR展现了卓越的性能。例如,在图像去雨任务中,DSwinIR在SPA数据集上相较于DRSformer取得了0.66 dB的PSNR提升。在全能图像恢复任务中,相比于PromptIR,DSwinIR在三任务设置和五任务设置下,分别取得了超过0.66 dB和1.04 dB的性能提升。代码:https://github.com/Aitical/DSwinIR

### Channel-Aware Transformer的研究背景 Channel-Aware Transformer是一种专注于通道维度上信息处理的Transformer变体,在计算机视觉领域得到了广泛应用。这类模型旨在增强不同通道间的关系建模能力,从而提高对输入数据的理解精度。 ### 研究论文分析 虽然提供的参考资料中并未直接提及Channel-Aware Transformer的具体细节[^1],但在Vision Transformer Based Methods部分可以推测该类方法属于基于Transformer架构的发展方向之一。对于更深入理解Channel-Aware Transformer的工作原理及其创新之处,建议查阅专门针对此主题的研究文献。 ### 实现方式探讨 通常情况下,Channel-Aware Transformer会引入特定机制来捕捉并利用跨通道的相关性: - **通道注意力机制**:通过计算各通道的重要性权重,使网络能够聚焦于最具代表性的特征。 - **多尺度融合策略**:结合来自多个分辨率下的表示,强化全局上下文感知力。 - **自适应调制层**:允许动态调整每层内部的操作参数,依据具体任务需求优化性能表现。 ```python class ChannelAwareAttention(nn.Module): def __init__(self, channels): super(ChannelAwareAttention, self).__init__() self.fc = nn.Linear(channels, channels) def forward(self, x): b, c, _, _ = x.size() y = F.avg_pool2d(x, (x.size(2), x.size(3))).view(b, c) y = torch.sigmoid(self.fc(y)).view(b, c, 1, 1) return x * y.expand_as(x) ``` 上述代码展示了如何构建一个简单的通道注意模块,其核心思想在于通过对平均池化后的特征图施加全连接变换以及Sigmoid激活函数得到一组可乘系数,进而实现对原始特征的选择性加强或抑制效果。 ### 应用场景举例 此类技术广泛应用于各类视觉识别任务当中,包括但不限于: - 图像分类与目标检测; - 场景解析及语义分割; - 超分辨率重建和风格迁移等创造性工作; 值得注意的是,HiveFormer所描述的历史感知指令条件多视图Transformer框架同样体现了对不同类型信息(如文字说明、图像序列)之间交互作用的关注,这与Channel-Aware Transformer强调的细粒度特征关联挖掘有着异曲同工之妙[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Qing_er爱吃山竹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值