【论文阅读】《Deep Learning for Depression Recognition with Audiovisual Cues: A Review》 summary

本文综述了自动抑郁症诊断系统(ADE)的发展,涵盖预处理、网络架构、性能提升、学习策略、空间特征提取、面部图像和视频序列识别、表情与行为分析、性能评估以及应用中的时空特征和挑战。深度学习在ADE中的应用显著提高识别精度,但面临数据库、透明度和样本分布等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本文并非逐句翻译,添加个人理解,如有需要,请自行阅读原文。

在这里插入图片描述

文章原文链接

ADE(自动抑郁症诊断系统)

自动抑郁估计系统 Automatic Depression Estimation systems

文章架构

在这里插入图片描述

①ADE 预处理

P62-P64

  • 数据收集:介绍了用于收集音频和视频抑郁数据的方法,包括使用计算机或笔记本电脑录制音频片段,以及使用多摄像头从不同角度录制面部和全身视频。还提到了使用基于眼温的热像图和Microsoft Kinect来记录参与者的上半身数据。
    在这里插入图片描述

  • 数据库回顾:讨论了用于抑郁识别的20个数据库(原文3.2已审查的数据库),其中只有8个对公众开放。这些数据库对于开发和评估抑郁评估工具至关重要,且大多数数据库是为特定研究而建立的私有数据集。

  • 深度学习架构:概述了用于ADE的深度神经网络(DNN)架构,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)、编解码器和自编码器架构、生成对抗网络(GAN)等。

  • 预处理:描述了在音频和视频数据上执行的预处理步骤,例如调整音频采样率(原文4.1 预处理)、生成频谱图、使用不同的窗口函数,以及进行面部检测和对齐。

  • 研究趋势:指出自2013年以来,基于音频视觉线索的ADE领域的研究出版物数量迅速增加,特别是在2017年之后,深度学习在ADE中的应用受到了极大的关注。

  • 特征提取和模型融合:介绍了如何结合手工制作的特征和深度学习特征来提高抑郁识别的性能,包括使用时间-频率通道向量化(TFCV)块和DenseNet结构来提取信息丰富的模式。

②ADE 网络架构

P65-P67

  • 传统和深度学习方法在音频抑郁识别中的应用,包括手工特征提取和深度学习模型的使用。

  • 描述了LeNet-5网络结构,它由卷积层、池化层和全连接层组成,以及编解码器架构的基本构成。

  • 长短期记忆网络(LSTM)的引入,它通过三个门(输入门、输出门和遗忘门)来解决循环神经网络(RNN)中的梯度消失或爆炸问题。
    在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值