Transformer源码详解(Pytorch版本)逐行讲解

目录

 从整体网路结构来看,分为三个部分:编码层,解码层,输出层1、编码层

编码器层

编码端:

A      Embedding层

B  positionalEncodding位置编码

C    六层EncoderLayer循环

self.enc_self_attn = MultiHeadAttention()多头注意力self.pos_ffn = PoswiseFeedForwardNet()前馈神经网络

 1、多头注意力

(1)forward 的第234行:

(2)forward 的第5行:

(3)forward第6行

(4)forward第7行:

(5)forward第8行:

 (6)forward第9行:

 2、前馈神经网络

 2、解码层

解码端

解码端:

(1)forward:第1行

Embedding层

(2)forward:第2行

positionalEncodding位置编码

(3)forward:第3行

Mask

(4)forward:第4行


class Transformer(nn.Module):
    def __init__(self):
        super(Transformer, self).__init__()
        self.encoder = Encoder()  ## 编码层
        self.decoder = Decoder()  ## 解码层
        self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False) ## 输出层 d_model 是我们解码层每个token输出的维度大小,之后会做一个 tgt_vocab_size 大小的softmax
    def forward(self, enc_inputs, dec_inputs):
        ## 这里有两个数据进行输入,一个是enc_inputs 形状为[batch_size, src_len],主要是作为编码段的输入,一个dec_inputs,形状为[batch_size, tgt_len],主要是作为解码端的输入

        ## enc_inputs作为输入 形状为[batch_size, src_len],输出由自己的函数内部指定,想要什么指定输出什么,可以是全部tokens的输出,可以是特定每一层的输出;也可以是中间某些参数的输出;
        ## enc_outputs就是主要的输出,enc_self_attns这里没记错的是QK转置相乘之后softmax之后的矩阵值,代表的是每个单词和其他单词相关性;
        enc_outputs, enc_self_attns = self.encoder(enc_inputs)

        ## dec_outputs 是decoder主要输出,用于后续的linear映射; dec_self_attns类比于enc_self_attns 是查看每个单词对decoder中输入的其余单词的相关性;dec_enc_attns是decoder中每个单词对encoder中每个单词的相关性;
        dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)

        ## dec_outputs做映射到词表大小
        dec_logits = self.projection(dec_outputs) # dec_logits : [batch_size x src_vocab_size x tgt_vocab_size]
        return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns

 从整体网路结构来看,分为三个部分:编码层,解码层,输出层
1、编码层

编码器层

每个编码器层由两个子层连接结构组成:

第一个子层包括一个多头自注意力层和规范化层以及一个残差连接;

第二个子层包括一个前馈全连接层和规范化层以及一个残差连接;

如下图所示:

可以看到,两个子层的结构其实是一致的,只是中间核心层的实现不同

部分参考Transformer代码完全解读! - 知乎

class Transformer(nn.Module):
    def __init__(self):
        super(Transformer, self).__init__()
        self.encoder = Encoder()  ## 编码层
        self.decoder = Decoder()  ## 解码层
        self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False) ## 输出层 d_model 是我们解码层每个token输出的维度大小,之后会做一个 tgt_vocab_size 大小的softmax
    def forward(self, enc_inputs, dec_inputs):
        ## 这里有两个数据进行输入,一个是enc_inputs 形状为[batch_size, src_len],主要是作为编码段的输入,一个dec_inputs,形状为[batch_size, tgt_len],主要是作为解码端的输入

        ## enc_inputs作为输入 形状为[batch_size, src_len],输出由自己的函数内部指定,想要什么指定输出什么,可以是全部tokens的输出,可以是特定每一层的输出;也可以是中间某些参数的输出;
        ## enc_outputs就是主要的输出,enc_self_attns这里没记错的是QK转置相乘之后softmax之后的矩阵值,代表的是每个单词和其他单词相关性;
        enc_outputs, enc_self_attns = self.encoder(enc_inputs)

        ## dec_outputs 是decoder主要输出,用于后续的linear映射; dec_self_attns类比于enc_self_attns 是查看每个单词对decoder中输入的其余单词的相关性;dec_enc_attns是decoder中每个单词对encoder中每个单词的相关性;
        dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)

        ## dec_outputs做映射到词表大小
        dec_logits = self.projection(dec_outputs) # dec_logits : [batch_size x src_vocab_size x tgt_vocab_size]
        return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns

## 2. Encoder 部分包含三个部分:词向量embedding,位置编码部分,注意力层及后续的前馈神经网络

class Encoder(nn.Module):
    def __init__(self):
        super(Encoder, self).__init__()
        self.src_emb = nn.Embedding(src_vocab_size, d_model)  ## 这个其实就是去定义生成一个矩阵,大小是 src_vocab_size * d_model
        self.pos_emb = PositionalEncoding(d_model) ## 位置编码情况,这里是固定的正余弦函数,也可以使用类似词向量的nn.Embedding获得一个可以更新学习的位置编码
        self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)]) ## 使用ModuleList对多个encoder进行堆叠,因为后续的encoder并没有使用词向量和位置编码,所以抽离出来;

    def forward(self, enc_inputs):
        ## 这里我们的 enc_inputs 形状是: [batch_size x source_len]

        ## 下面这个代码通过src_emb,进行索引定位,enc_outputs输出形状是[batch_size, src_len, d_model]
        enc_outputs = self.src_emb(enc_inputs)

        ## 这里就是位置编码,把两者相加放入到了这个函数里面,从这里可以去看一下位置编码函数的实现;3.
        enc_outputs = self.pos_emb(enc_outputs.transpose(0, 1)).transpose(0, 1)

        ##get_attn_pad_mask是为了得到句子中pad的位置信息,给到模型后面,在计算自注意力和交互注意力的时候去掉pad符号的影响,去看一下这个函数 4.
        enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs)
        enc_self_attns = []
        for layer in self.layers:
            ## 去看EncoderLayer 层函数 5.
            enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask)
            enc_self_attns.append(enc_self_attn)
        return enc_outputs, enc_self_attns

编码端:

self.src_emb = nn.Embedding(src_vocab_size, d_model) 
self.pos_emb = PositionalEncoding(d_model) 
self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])

三个函数 原理见上一章,本文主要讲代码

A      Embedding层

的作用是将某种格式的输入数据,例如文本,转变为模型可以处理的向量表示,来描述原始数据所包含的信息。

Embedding层输出的可以理解为当前时间步的特征,如果是文本任务,这里就可以是Word Embedding,如果是其他任务,就可以是任何合理方法所提取的特征。

构建Embedding层的代码很简单,核心是借助torch提供的nn.Embedding

B  positionalEncodding位置编码

的作用是为模型提供当前时间步的前后出现顺序的信息。因为Transformer不像RNN那样的循环结构有前后不同时间步输入间天然的先后顺序,所有的时间步是同时输入,并行推理的,因此在时间步的特征中融合进位置编码的信息是合理的。

## 3. PositionalEncoding 代码实现
class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()

        ## 位置编码的实现其实很简单,直接对照着公式去敲代码就可以,下面这个代码只是其中一种实现方式;
        ## 从理解来讲,需要注意的就是偶数和奇数在公式上有一个共同部分,我们使用log函数把次方拿下来,方便计算;
        ## pos代表的是单词在句子中的索引,这点需要注意;比如max_len是128个,那么索引就是从0,1,2,...,127
        ##假设我的demodel是512,2i那个符号中i从0取到了255,那么2i对应取值就是0,2,4...510
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)## 这里需要注意的是pe[:, 0::2]这个用法,就是从0开始到最后面,补长为2,其实代表的就是偶数位置
        pe[:, 1::2] = torch.cos(position * div_term)##这里需要注意的是pe[:, 1::2]这个用法,就是从1开始到最后面,补长为2,其实代表的就是奇数位置
        ## 上面代码获取之后得到的pe:[max_len*d_model]

        ## 下面这个代码之后,我们得到的pe形状是:[max_len*1*d_model]
        pe = pe.unsqueeze(0).transpose(0, 1)

        self.register_buffer('pe', pe)  ## 定一个缓冲区,其实简单理解为这个参数不更新就可以

    def forward(self, x):
        """
        x: [seq_len, batch_size, d_model]
        """
        x = x + self.pe[:x.size(0), :]
        return self.dropout(x)

C    六层EncoderLayer循环

class EncoderLayer(nn.Module):
    def __init__(self):
        super(EncoderLayer, self).__init__()
        self.enc_self_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()

    def forward(self, enc_inputs, enc_self_attn_mask):
        ## 下面这个就是做自注意力层,输入是enc_inputs,形状是[batch_size x seq_len_q x d_model] 需要注意的是最初始的QKV矩阵是等同于这个输入的,去看一下enc_self_attn函数 6.
        enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_inputs to same Q,K,V
        enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size x len_q x d_model]
        return enc_outputs, attn

self.enc_self_attn = MultiHeadAttention()多头注意力
self.pos_ffn = PoswiseFeedForwardNet()前馈神经网络

 1、多头注意力

class MultiHeadAttention(nn.Module):
    def __init__(self):
        super(MultiHeadAttention, self).__init__()
        ## 输入进来的QKV是相等的,我们会使用映射linear做一个映射得到参数矩阵Wq, Wk,Wv
        self.W_Q = nn.Linear(d_model, d_k * n_heads)
        self.W_K = nn.Linear(d_model, d_k * n_heads)
        self.W_V = nn.Linear(d_model, d_v * n_heads)
        self.linear = nn.Linear(n_heads * d_v, d_model)
        self.layer_norm = nn.LayerNorm(d_model)

    def forward(self, Q, K, V, attn_mask):

        ## 这个多头分为这几个步骤,首先映射分头,然后计算atten_scores,然后计算atten_value;
        ##输入进来的数据形状: Q: [batch_size x len_q x d_model], K: [batch_size x len_k x d_model], V: [batch_size x len_k x d_model]
        residual, batch_size = Q, Q.size(0)
        # (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)

        ##下面这个就是




        q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1,2)  # q_s: [batch_size x n_heads x len_q x d_k]
        k_s = self.W_K(K).view(batch_size, -1, n_heads, d_k).transpose(1,2)  # k_s: [batch_size x n_heads x len_k x d_k]
        v_s = self.W_V(V).view(batch_size, -1, n_heads, d_v).transpose(1,2)  # v_s: [batch_size x n_heads x len_k x d_v]

        ## 输入进行的attn_mask形状是 batch_size x len_q x len_k,然后经过下面这个代码得到 新的attn_mask : [batch_size x n_heads x len_q x len_k],就是把pad信息重复了n个头上
        attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1)


        ##然后我们计算 ScaledDotProductAttention 这个函数,去7.看一下
        ## 得到的结果有两个:context: [batch_size x n_heads x len_q x d_v], attn: [batch_size x n_heads x len_q x len_k]
        context, attn = ScaledDotProductAttention()(q_s, k_s, v_s, attn_mask)
        context = context.transpose(1, 2).contiguous().view(batch_size, -1, n_heads * d_v) # context: [batch_size x len_q x n_heads * d_v]
        output = self.linear(context)
        return self.layer_norm(output + residual), attn # output: [batch_size x len_q x d_model]

分析

(1)forward 的第234行:

该代码的意思是将传入的Q、K、V三维矩阵经过一层全连接层后,重塑为四维矩阵,并且四维矩阵的第二三维转置。(转置代码如下:

q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1,2) 

图示可以很好的解释数据结构:

如图所示最后得到的结果是个四维矩阵,维度依次是B、h、F、d-k。B就是Batch-size,h是多头自注意力机制中的头数,F是一个样本中的字符数,可以理解为一个句子中的单词个数,d-k是每个字符对应的embedding长度。

ps:我的代码中是[batch_size x len_q x d_model]变四维变成[batch_size x n_heads x len_q x d_k]。上文中B、h、F、d-k对应我的代码的[batch_size x n_heads x len_q x d_k]。

在torch中,view函数的功能和reshape的功能差不多,参数-1是让机器去猜的意思。比如有个矩阵大小为1*24,view(-1,2,4),那么这个-1就是代表3。所以上面

(转置代码

q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1,2) 

)中的-1,表示机器计算,代表len_q

(2)forward 的第5行:

 ## 输入进行的attn_mask形状是 batch_size x len_q x len_k,然后经过下面这个代码得到 新的attn_mask : [batch_size x n_heads x len_q x len_k],就是把pad信息重复了n个头上
        attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1)

attn_mask是什么呢?

首先,attn_mask是传进来的参数,

class MultiHeadAttention(nn.Module):
        def forward(self, Q, K, V, attn_mask)

那么跳回导函数调用前,

多头注意力函数是被谁定义的呢?

如下:

class Encoder(nn.Module):
    def __init__(self):
        super(Encoder, self).__init__()
        self.src_emb = nn.Embedding(src_vocab_size, d_model)  ## 这个其实就是去定义生成一个矩阵,大小是 src_vocab_size * d_model
        self.pos_emb = PositionalEncoding(d_model) ## 位置编码情况,这里是固定的正余弦函数,也可以使用类似词向量的nn.Embedding获得一个可以更新学习的位置编码
        self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)]) ## 使用ModuleList对多个encoder进行堆叠,因为后续的encoder并没有使用词向量和位置编码,所以抽离出来;

    def forward(self, enc_inputs):
        ## 这里我们的 enc_inputs 形状是: [batch_size x source_len]

        ## 下面这个代码通过src_emb,进行索引定位,enc_outputs输出形状是[batch_size, src_len, d_model]
        enc_outputs = self.src_emb(enc_inputs)

        ## 这里就是位置编码,把两者相加放入到了这个函数里面,从这里可以去看一下位置编码函数的实现;3.
        enc_outputs = self.pos_emb(enc_outputs.transpose(0, 1)).transpose(0, 1)

        ##get_attn_pad_mask是为了得到句子中pad的位置信息,给到模型后面,在计算自注意力和交互注意力的时候去掉pad符号的影响,去看一下这个函数 4.
        enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs)
        enc_self_attns = []
        for layer in self.layers:
            ## 去看EncoderLayer 层函数 5.
            enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask)
            enc_self_attns.append(enc_self_attn)
        return enc_outputs, enc_self_attns
class EncoderLayer(nn.Module):
    def __init__(self):
        super(EncoderLayer, self).__init__()
        self.enc_self_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()

    def forward(self, enc_inputs, enc_self_attn_mask):
        ## 下面这个就是做自注意力层,输入是enc_inputs,形状是[batch_size x seq_len_q x d_model] 需要注意的是最初始的QKV矩阵是等同于这个输入的,去看一下enc_self_attn函数 6.
        enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_inputs to same Q,K,V
        enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size x len_q x d_model]
        return enc_outputs, attn

 我们知道encoderlayer是encoder里面循环的层,transformer中一共6层,循环六个encoderlayer

enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask)

观察传入的参数:enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask

对应

MultiHeadAttention(nn.Module):
        def forward(self, Q, K, V, attn_mask)

里面的 Q, K, V, attn_mask

那么我们得知了两点信息

1)QKV在初始时候 传入的是三个相同的编码端的输入数据 也就是enc_inputs,他们在经过全连接层是乘上不同的W权重(WQ\WK\WV)才得出的q_s\k_s\_v_s

2)enc_self_attn_mask

又表示什么呢? 我们看一下它的定义,是在大的Encoder函数中

enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs)

get_attn_pad_mask函数是什么?表示生成符号矩阵

## 4. get_attn_pad_mask

## 比如说,我现在的句子长度是5,在后面注意力机制的部分,我们在计算出来QK转置除以根号之后,softmax之前,我们得到的形状
## len_input * len*input  代表每个单词对其余包含自己的单词的影响力

## 所以这里我需要有一个同等大小形状的矩阵,告诉我哪个位置是PAD部分,之后在计算计算softmax之前会把这里置为无穷大;

## 一定需要注意的是这里得到的矩阵形状是batch_size x len_q x len_k,我们是对k中的pad符号进行标识,并没有对k中的做标识,因为没必要

## seq_q 和 seq_k 不一定一致,在交互注意力,q来自解码端,k来自编码端,所以告诉模型编码这边pad符号信息就可以,解码端的pad信息在交互注意力层是没有用到的;

def get_attn_pad_mask(seq_q, seq_k):
    batch_size, len_q = seq_q.size()
    batch_size, len_k = seq_k.size()
    # eq(zero) is PAD token
    pad_attn_mask = seq_k.data.eq(0).unsqueeze(1)  # batch_size x 1 x len_k, one is masking 
    return pad_attn_mask.expand(batch_size, len_q, len_k)  # batch_size x len_q x len_k

比如说,我现在的句子长度是5,在后面注意力机制的部分,我们在计算出来QK转置除以根号之后,softmax之前,我们得到的形状
 len_input * len*input  代表每个单词对其余包含自己的单词的影响力

所以这里我需要有一个同等大小形状的矩阵,告诉我哪个位置是PAD部分,之后在计算计算softmax之前会把这里置为无穷大;

一定需要注意的是这里得到的矩阵形状是batch_size x len_q x len_k,我们是对k中的pad符号进行标识,并没有对q中的做标识,因为没必要(尚未理解,有理解的小伙伴评论私信奥)

 seq_q 和 seq_k 不一定一致,在交互注意力,q来自解码端,k来自编码端,所以告诉模型编码这边pad符号信息就可以,解码端的pad信息在交互注意力层是没有用到的;

就是如果seq_k.data等于0,那么就设置为true 1,表示此处是添加了pad的,

例如:

import torch
# [batch_size, src_len]1,3,
seq_k=torch.Tensor([[1,
       2,
       0]])
seq_q=torch.Tensor([[1,
       2,
       0]])
print(seq_k.shape)
batch_size, len_q = seq_q.size()
batch_size, len_k = seq_k.size()
print(batch_size, len_q,batch_size, len_k)
attn_mask = seq_k.data.eq(0).unsqueeze(1)#batch_size x 1 x len_k
print(attn_mask)
print(attn_mask.shape)
attn_mask=attn_mask.expand(batch_size, len_q, len_k)
print(attn_mask)
print(attn_mask.shape)

 结果:

torch.Size([1, 3])
1 3 1 3
tensor([[[False, False,  True]]])
torch.Size([1, 1, 3])
tensor([[[False, False,  True],
         [False, False,  True],
         [False, False,  True]]])
torch.Size([1, 3, 3])
tensor([[[[False, False,  True],
          [False, False,  True],
          [False, False,  True]]]])
torch.Size([1, 1, 3, 3])

可知pad_attn_mask是一个符号矩阵,表示一个能判断在值为1处添加的pad 

回到最初的起点,pad_attn_mask作为实参传入EncoderLayer,对应形参enc_self_attn_mask

enc_self_attn_mask作为实参传入 MultiHeadAttention,对应形参attn_mask

attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1)

(3)forward第6行

##然后我们计算 ScaledDotProductAttention 这个函数,去7.看一下
        ## 得到的结果有两个:context: [batch_size x n_heads x len_q x d_v], attn: [batch_size x n_heads x len_q x len_k]
        context, attn = ScaledDotProductAttention()(q_s, k_s, v_s, attn_mask)

这句代码就是调用ScaledDotProductAttention函数,如下,返回权重矩阵与P矩阵。

class ScaledDotProductAttention(nn.Module):
    def __init__(self):
        super(ScaledDotProductAttention, self).__init__()

    def forward(self, Q, K, V, attn_mask):
        ## 输入进来的维度分别是 [batch_size x n_heads x len_q x d_k]  K: [batch_size x n_heads x len_k x d_k]  V: [batch_size x n_heads x len_k x d_v]
        ##首先经过matmul函数得到的scores形状是 : [batch_size x n_heads x len_q x len_k]
        scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k)

        ## 然后关键词地方来了,下面这个就是用到了我们之前重点讲的attn_mask,把被mask的地方置为无限小,softmax之后基本就是0,对q的单词不起作用
        scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is one.
        attn = nn.Softmax(dim=-1)(scores)
        context = torch.matmul(attn, V)
        return context, attn

在这里我再强调一遍数据的流转细节(我一直认为,看深度学习模型源码,最重要的就是搞懂数据流转过程中维度的变化,可以很好的掌握算法的细节以及体会到并行运算的高效。

其中F*F(代码中的len)就可以理解为每个字符(特征)之间两两相似度分数scores,
即P矩阵是个方阵。下面的PAD表示填充,填充就是当句子长度不满足max_len时候,会填充pad。但是计算相似度的时候,不必计算与pad的相似度,没必要,下图是没将pad被mask的地方置为无限小,例如卷和pad根本不相似,但是值竟然高达9,会造成相似度干扰。所以关键词地方来了,下面这个就是用到了我们之前重点讲的attn_mask,把被mask的地方置为无限小,softmax之后基本就是0,对q的单词不起作用。

然后相似度矩阵score 经过Softmax后为attn矩阵 ,他的每一行之和等于1,再与Value矩阵相乘,得到权重矩阵context。

权重矩阵的每一行可以理解为经过自注意力机制后的每个字符的embedding,即经过考虑其他所有字符影响的embedding。 

context, attn返回

小部分参考:Transformer源码详解(Pytorch版本) - 知乎

Q[b,n,l_q,d_k]

K[b,n,l_k,d_k]

V[b,n,l_k,d_v]

K的转置[b,n,d_k,l_k]

QK的转置[b,n,l_q,l_k]

attn[b,n,l_q,l_k]

context=attn*V [b,n,l_q,d_v]

(4)forward第7行:

 context = context.transpose(1, 2).contiguous().view(batch_size, -1, n_heads * d_v) # context: [batch_size x len_q x n_heads * d_v]
context变为 [batch_size x len_q x n_heads * d_v]

执行view操作之后,不会开辟新的内存空间来存放处理之后的数据,实际上新数据与原始数据共享同一块内存。

而在调用contiguous()之后,PyTorch会开辟一块新的内存空间存放变换之后的数据,并会真正改变Tensor的内容,按照变换之后的顺序存放数据。

(5)forward第8行:

output = self.linear(context)

执行

self.linear = nn.Linear(n_heads * d_v, d_model)
 context: [batch_size x len_q x n_heads * d_v]

输入n_heads * d_v,维度,经过全连接输出维度为d_model

 (6)forward第9行:

return self.layer_norm(output + residual), attn

 显而易见,这是一个残差连接,为了避免梯度消失。

 2、前馈神经网络

class PoswiseFeedForwardNet(nn.Module):
    def __init__(self):
        super(PoswiseFeedForwardNet, self).__init__()
        self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
        self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
        self.layer_norm = nn.LayerNorm(d_model)

    def forward(self, inputs):
        residual = inputs # inputs : [batch_size, len_q, d_model]
        output = nn.ReLU()(self.conv1(inputs.transpose(1, 2)))
        output = self.conv2(output).transpose(1, 2)
        return self.layer_norm(output + residual)

 2、解码层

 建议看完我总结的NLP从入门到放弃的transformer 的笔记总结

NLP从入门到放弃的transformer 的笔记总结_Queen_sy的博客-CSDN博客

和  Transformer源码详解(Pytorch版本)编码层

Transformer源码详解(Pytorch版本)_Queen_sy的博客-CSDN博客

class Transformer(nn.Module):
    def __init__(self):
        super(Transformer, self).__init__()
        self.encoder = Encoder()  ## 编码层
        self.decoder = Decoder()  ## 解码层
        self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False) ## 输出层 d_model 是我们解码层每个token输出的维度大小,之后会做一个 tgt_vocab_size 大小的softmax
    def forward(self, enc_inputs, dec_inputs):
        ## 这里有两个数据进行输入,一个是enc_inputs 形状为[batch_size, src_len],主要是作为编码段的输入,一个dec_inputs,形状为[batch_size, tgt_len],主要是作为解码端的输入

        ## enc_inputs作为输入 形状为[batch_size, src_len],输出由自己的函数内部指定,想要什么指定输出什么,可以是全部tokens的输出,可以是特定每一层的输出;也可以是中间某些参数的输出;
        ## enc_outputs就是主要的输出,enc_self_attns这里没记错的是QK转置相乘之后softmax之后的矩阵值,代表的是每个单词和其他单词相关性;
        enc_outputs, enc_self_attns = self.encoder(enc_inputs)

        ## dec_outputs 是decoder主要输出,用于后续的linear映射; dec_self_attns类比于enc_self_attns 是查看每个单词对decoder中输入的其余单词的相关性;dec_enc_attns是decoder中每个单词对encoder中每个单词的相关性;
        dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)

        ## dec_outputs做映射到词表大小
        dec_logits = self.projection(dec_outputs) # dec_logits : [batch_size x src_vocab_size x tgt_vocab_size]
        return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns

解码端

class Transformer(nn.Module):
    def __init__(self):
        super(Transformer, self).__init__()
        self.encoder = Encoder()  ## 编码层
        self.decoder = Decoder()  ## 解码层
        self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False) ## 输出层 d_model 是我们解码层每个token输出的维度大小,之后会做一个 tgt_vocab_size 大小的softmax
    def forward(self, enc_inputs, dec_inputs):
        ## 这里有两个数据进行输入,一个是enc_inputs 形状为[batch_size, src_len],主要是作为编码段的输入,一个dec_inputs,形状为[batch_size, tgt_len],主要是作为解码端的输入

        ## enc_inputs作为输入 形状为[batch_size, src_len],输出由自己的函数内部指定,想要什么指定输出什么,可以是全部tokens的输出,可以是特定每一层的输出;也可以是中间某些参数的输出;
        ## enc_outputs就是主要的输出,enc_self_attns这里没记错的是QK转置相乘之后softmax之后的矩阵值,代表的是每个单词和其他单词相关性;
        enc_outputs, enc_self_attns = self.encoder(enc_inputs)

        ## dec_outputs 是decoder主要输出,用于后续的linear映射; dec_self_attns类比于enc_self_attns 是查看每个单词对decoder中输入的其余单词的相关性;dec_enc_attns是decoder中每个单词对encoder中每个单词的相关性;
        dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)

       ## dec_outputs做映射到词表大小
        dec_logits = self.projection(dec_outputs) # dec_logits : [batch_size x src_vocab_size x tgt_vocab_size]
        return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns
 

如图:
输出: dec_outputs, dec_self_attns, dec_enc_attns :解码端输出、解码端自注意力、交互注意力

输入:dec_inputs, enc_inputs, enc_outputs:解码端输入、编码端输入、编码端输出( enc_inputs这个平衡用的 没什么意义)

 

解码端:

class Decoder(nn.Module):
    def __init__(self):
        super(Decoder, self).__init__()
        self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model)
        self.pos_emb = PositionalEncoding(d_model)
        self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)])

    def forward(self, dec_inputs, enc_inputs, enc_outputs): # dec_inputs : [batch_size x target_len]
        dec_outputs = self.tgt_emb(dec_inputs)  # [batch_size, tgt_len, d_model]
        dec_outputs = self.pos_emb(dec_outputs.transpose(0, 1)).transpose(0, 1) # [batch_size, tgt_len, d_model]

        ## get_attn_pad_mask 自注意力层的时候的pad 部分
        dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs)

        ## get_attn_subsequent_mask 这个做的是自注意层的mask部分,就是当前单词之后看不到,使用一个上三角为1的矩阵
        dec_self_attn_subsequent_mask = get_attn_subsequent_mask(dec_inputs)

        ## 两个矩阵相加,大于0的为1,不大于0的为0,为1的在之后就会被fill到无限小
        dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequent_mask), 0)


        ## 这个做的是交互注意力机制中的mask矩阵,enc的输入是k,我去看这个k里面哪些是pad符号,给到后面的模型;注意哦,我q肯定也是有pad符号,但是这里我不在意的,之前说了好多次了哈
        dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs)

        dec_self_attns, dec_enc_attns = [], []
        for layer in self.layers:
            dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask)
            dec_self_attns.append(dec_self_attn)
            dec_enc_attns.append(dec_enc_attn)
        return dec_outputs, dec_self_attns, dec_enc_attns
self.src_emb = nn.Embedding(src_vocab_size, d_model) 
self.pos_emb = PositionalEncoding(d_model) 
self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])

三个函数 原理见上一章,本文主要讲代码

(1)forward:第1行

将解码端的输入dec_inputs ——经过Embedding层——输出的词向量dec_outputs

dec_inputs : [batch_size , target_len]
dec_outputs:[batch_size, tgt_len, d_model]

Embedding层

的作用是将某种格式的输入数据,例如文本,转变为模型可以处理的向量表示,来描述原始数据所包含的信息。

Embedding层输出的可以理解为当前时间步的特征,如果是文本任务,这里就可以是Word Embedding,如果是其他任务,就可以是任何合理方法所提取的特征。

构建Embedding层的代码很简单,核心是借助torch提供的nn.Embedding

(2)forward:第2行

dec_outputs = self.pos_emb(dec_outputs.transpose(0, 1)).transpose(0, 1) # [batch_size, tgt_len, d_model]

上一步的词向量输出dec_outputs[batch_size, tgt_len, d_model]——互换0、1维度——
dec_outputs[tgt_len,batch_size, d_model]——经过位置编码pos_emb——互换0、1维度——

输出dec_outputs[batch_size, tgt_len, d_model]

positionalEncodding位置编码

的作用是为模型提供当前时间步的前后出现顺序的信息。因为Transformer不像RNN那样的循环结构有前后不同时间步输入间天然的先后顺序,所有的时间步是同时输入,并行推理的,因此在时间步的特征中融合进位置编码的信息是合理的。

## 3. PositionalEncoding 代码实现
class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()
 
        ## 位置编码的实现其实很简单,直接对照着公式去敲代码就可以,下面这个代码只是其中一种实现方式;
        ## 从理解来讲,需要注意的就是偶数和奇数在公式上有一个共同部分,我们使用log函数把次方拿下来,方便计算;
        ## pos代表的是单词在句子中的索引,这点需要注意;比如max_len是128个,那么索引就是从0,1,2,...,127
        ##假设我的demodel是512,2i那个符号中i从0取到了255,那么2i对应取值就是0,2,4...510
        self.dropout = nn.Dropout(p=dropout)
 
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)## 这里需要注意的是pe[:, 0::2]这个用法,就是从0开始到最后面,补长为2,其实代表的就是偶数位置
        pe[:, 1::2] = torch.cos(position * div_term)##这里需要注意的是pe[:, 1::2]这个用法,就是从1开始到最后面,补长为2,其实代表的就是奇数位置
        ## 上面代码获取之后得到的pe:[max_len*d_model]
 
        ## 下面这个代码之后,我们得到的pe形状是:[max_len*1*d_model]
        pe = pe.unsqueeze(0).transpose(0, 1)
 
        self.register_buffer('pe', pe)  ## 定一个缓冲区,其实简单理解为这个参数不更新就可以
 
    def forward(self, x):
        """
        x: [seq_len, batch_size, d_model]
        """
        x = x + self.pe[:x.size(0), :]
        return self.dropout(x)

(3)forward:第3行

自注意力层有两个mask

一是对自身pad符号mask

二是对当前单词之后看不到单词mask

下面参考Transformer模型详解 - 知乎

  • Mask

Mask 表示掩码,它对某些值进行掩盖,使其在参数更新时不产生效果。Transformer 模型里面涉及两种 mask,分别是 padding mask 和 sequence mask。

  1. padding mask

因为每个批次输入序列长度是不一样的,因此我们需要对不同长度的序列进行对齐,具体来说,就是给在较短的序列后面填充 0。因为这些填充的位置其实是没什么意义的,我们的 Attention 机制不应该把注意力放在这些位置上,所以我们具体的做法是,把这些位置的值加上一个非常大的负数(负无穷),这样经过 softmax 后这些位置的概率就会接近0,不会影响Attention的结果。

2. sequence mask

大家还记得这张Scaled Dot-Product Attention嘛?这是multi-head attention中的一个模块,对于decoder中的第一个multi-head attention层,我们需要添加一个mask模块进去。

这是为了使得decoder看不见未来的信息。也就是说,对于一个序列,在 time_step 为 t 的时刻,我们的解码输出应该只能依赖于 t 时刻之前的输出,而不能依赖 t 时刻之后的输出。因此我们通过增加Mask的方法,把 t 时刻之后的信息给隐藏起来。

具体的做法为:产生一个上三角矩阵,下三角的值全为1,上三角的值权威0,对角线也是1。把这个矩阵作用在每一个序列上,就能达到我们的目的。

第三行就是对自身pad符号mask

第四行就是对当前单词之后看不到单词mask

先看第三行的

## get_attn_pad_mask 自注意力层的时候的pad 部分
dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs)

输出一个符号矩阵:矩阵中1 表示句子长度不够max_len用pad填充,0表示未填充

def get_attn_pad_mask(seq_q, seq_k):
    batch_size, len_q = seq_q.size()
    batch_size, len_k = seq_k.size()
    # eq(zero) is PAD token
    pad_attn_mask = seq_k.data.eq(0).unsqueeze(1)  # batch_size x 1 x len_k, one is masking 
    return pad_attn_mask.expand(batch_size, len_q, len_k)  # batch_size x len_q x len_k

比如说,我现在的句子长度是5,在后面注意力机制的部分,我们在计算出来QK转置除以根号之后,softmax之前,我们得到的形状
 len_input * len*input  代表每个单词对其余包含自己的单词的影响力

所以这里我需要有一个同等大小形状的矩阵,告诉我哪个位置是PAD部分,之后在计算计算softmax之前会把这里置为无穷大;

一定需要注意的是这里得到的矩阵形状是batch_size x len_q x len_k,我们是对k中的pad符号进行标识,并没有对q中的做标识,因为没必要(尚未理解,有理解的小伙伴评论私信奥)

 seq_q 和 seq_k 不一定一致,在交互注意力,q来自解码端,k来自编码端,所以告诉模型编码这边pad符号信息就可以,解码端的pad信息在交互注意力层是没有用到的;

就是如果seq_k.data等于0,那么就设置为true 1,表示此处是添加了pad的,

例如

import torch
# [batch_size, src_len]1,3,
seq_k=torch.Tensor([[1,
       2,
       0]])
seq_q=torch.Tensor([[1,
       2,
       0]])
print(seq_k.shape)
batch_size, len_q = seq_q.size()
batch_size, len_k = seq_k.size()
print(batch_size, len_q,batch_size, len_k)
attn_mask = seq_k.data.eq(0).unsqueeze(1)#batch_size x 1 x len_k
print(attn_mask)
print(attn_mask.shape)
attn_mask=attn_mask.expand(batch_size, len_q, len_k)
print(attn_mask)
print(attn_mask.shape)

结果:

torch.Size([1, 3])
1 3 1 3
tensor([[[False, False,  True]]])
torch.Size([1, 1, 3])
tensor([[[False, False,  True],
         [False, False,  True],
         [False, False,  True]]])
torch.Size([1, 3, 3])
tensor([[[[False, False,  True],
          [False, False,  True],
          [False, False,  True]]]])
torch.Size([1, 1, 3, 3])

可知pad_attn_mask是一个符号矩阵,表示一个能判断在值为1处添加的pad 

(4)forward:第4行

生成上三角矩阵,对当前单词之后看不到单词mask

  • 28
    点赞
  • 213
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
Transformer模型是一种广泛应用于各个领域的模型,包括BERT和GPT等。它具有丰富的适用性。Transformer模型的基本原理是通过编码器和解码器来实现输入序列到输出序列的转换。在PyTorch中,可以使用以下代码实现一个Transformer模型: ```python class Transformer(nn.Module): def __init__(self): super(Transformer, self).__init__() self.encoder = Encoder() # 编码层 self.decoder = Decoder() # 解码层 self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False) # 输出层 def forward(self, enc_inputs, dec_inputs): # enc_inputs形状为\[batch_size, src_len\],作为编码段的输入 # dec_inputs形状为\[batch_size, tgt_len\],作为解码端的输入 enc_outputs, attn = self.encoder(enc_inputs) dec_outputs, attn = self.decoder(dec_inputs, enc_outputs) outputs = self.projection(dec_outputs) return outputs ``` 在这段代码中,Transformer模型包含了一个编码器(Encoder)、一个解码器(Decoder)和一个输出层(projection)。编码器和解码器分别通过Encoder和Decoder类实现。在forward方法中,首先将编码器的输入enc_inputs传入编码器,得到编码器的输出enc_outputs和注意力权重attn。然后将解码器的输入dec_inputs和编码器的输出enc_outputs传入解码器,得到解码器的输出dec_outputs和注意力权重attn。最后,将解码器的输出经过输出层进行线性变换,得到最终的输出outputs。 这段代码只是一个简单的示例,具体的实现细节可能会有所不同,但整体思路是相似的。通过编码器和解码器的组合,Transformer模型能够实现输入序列到输出序列的转换。 #### 引用[.reference_title] - *1* [Transformer模型入门详解及代码实现](https://blog.csdn.net/cuguanren/article/details/126540189)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Transformer源码详解Pytorch版本逐行讲解](https://blog.csdn.net/Queen_sy/article/details/127628559)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值