给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,再按非递减排序,然后用第1个数字减第2个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的6174,这个神奇的数字也叫Kaprekar常数。
例如,我们从6767开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
… …
现给定任意4位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个(0, 10000)区间内的正整数N。
输出格式:
如果N的4位数字全相等,则在一行内输出“N - N =
0000”;否则将计算的每一步在一行内输出,直到6174作为差出现,输出格式见样例。注意每个数字按4位数格式输出。
输入样例1:
6767
输出样例1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例2:
2222
输出样例2:
2222 - 2222 = 0000
思路:
把数字转换成字符数组后sort,虽然效率低,但效果尚可
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
bool cmp(char a,char b){
return a>b;
}
int main(){
int N;
char str[4];
int x,y,z;
scanf("%d",&N);
do{
memset(str,0,sizeof(str));
sprintf(str,"%04d",N);
sort(str,str+4,cmp);
x=1000*(str[0]-'0')+100*(str[1]-'0')+10*(str[2]-'0')+(str[3]-'0');
y=1000*(str[3]-'0')+100*(str[2]-'0')+10*(str[1]-'0')+(str[0]-'0');
z=x-y;
if(x==y){
printf("%04d - %04d = 0000\n",x,y);
break;
}
else{
printf("%04d - %04d = %04d\n",x,y,z);
}
N=z;
}while(z!=6174);
return 0;
}