局部遮阴光伏MPPT仿真模型-粒子群算法

局部遮阴光伏MPPT仿真模型-粒子群算法


局部遮阴光伏MPPT仿真模型-粒子群算法

摘要:光伏发电作为一种清洁、可再生的能源,受到了广泛关注。然而,由于天气条件和光照强度的变化,光伏阵列常常遭受到局部遮阴的影响,导致光电转换效率下降。为解决这一问题,本文提出了一种基于粒子群算法的局部遮阴光伏最大功率点追踪(MPPT)仿真模型。通过建立阴影模型和光伏阵列模型,结合粒子群算法优化方法,实现对局部遮阴光伏系统中最大功率点的精确追踪,提高光伏发电效率。

引言:光伏发电技术作为一种清洁、可再生的能源,被广泛应用于各个领域。然而,光伏阵列遭受到局部遮阴时,光照不均匀导致部分光伏电池组件工作在非最佳工作点,从而降低了光伏发电系统的整体效能。因此,实现局部遮阴光伏系统中最大功率点的精确追踪,

基于粒子群优化的光伏MPPT算法是一种应用于光伏阵列发电系统的最大功率点跟踪算法。该算法通过优化粒子群的位置来寻找光伏阵列的最大功率点,从而实现对光伏电池输出功率的最大化。 下面是一个简单的光伏MPPT粒子群算法的代码示例: ```matlab % 初始化粒子群 n = 100; % 粒子数量 max_iter = 100; % 最大迭代次数 v_max = 0.1; % 最大速度 x_max = 2; % 位置上限 x_min = -2; % 位置下限 pbest = zeros(n, 1); % 个体最佳位置 gbest = 0; % 全局最佳位置 gbest_val = 0; % 全局最佳值 % 初始化光伏阵列参数 V_oc = 40; % 开路电压 I_sc = 5; % 短路电流 R_s = 0.1; % 串联电阻 R_sh = 100; % 并联电阻 N_s = 36; % 串联电池数 N_p = 2; % 并联电池数 % 迭代寻找最佳位置 for iter = 1:max_iter % 更新粒子位置和速度 for i = 1:n % 更新速度 v(i) = v(i) + rand() * (pbest(i) - x(i)) + rand() * (gbest - x(i)); % 限制速度范围 v(i) = max(min(v(i), v_max), -v_max); % 更新位置 x(i) = x(i) + v(i); % 限制位置范围 x(i) = max(min(x(i), x_max), x_min); end % 计算适应度值 for i = 1:n % 计算当前位置下的光伏阵列输出功率 V_mp = V_oc - x(i) * N_s * (I_sc + x(i) * N_p) * R_s; I_mp = (V_oc - x(i) * N_s * V_mp) / (R_s + N_s * x(i)); P = V_mp * I_mp; % 更新个体最佳位置和全局最佳位置 if P > pbest(i) pbest(i) = P; end if P > gbest_val gbest = x(i); gbest_val = P; end end end % 输出最佳位置和最佳值 disp(['最佳位置: ', num2str(gbest)]); disp(['最佳值: ', num2str(gbest_val)]); ``` 请注意,以上代码只是一个示例,实际应用中需要根据具体的光伏阵列参数和需求进行适当的调整和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值