深度学习算法评价标准AP bbox bev 3d

本文深入探讨了深度学习算法在3D目标检测中的关键性能指标,包括2D检测框准确率(bbox)、BEV视图检测框准确率(bev)、3D检测框准确率(3d)和目标旋转角度准确率(aos)。通过实例分析SA-SSD和PointPillars算法,阐述了不同难度级别下平均精度(AP)的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习算法的检测指标

深度学习算法测试的数据集一般采用公开的数据集进行训练和测试,比如常用的KITTI数据集。
深度学习算法的检测指标通常由bbox、bev、3d、aos四个检测指标

在这里插入图片描述

上述四个检测指标的含义:

bbox:2D检测框的准确率
bev:BEV视图下检测框的准确率
3d:3D检测框的准确率
aos:检测目标旋转角度的准确率

这篇博客介绍了SA-SSD算法的3D框指标计算的代码

因为SA-SSD算法采用的是mmdetection架构,这篇文章详细介绍了mmdetection中configs中各项参数的解释


上面图中给出car AP @0.7 0.7 0.7 和car AP @0.7 0.5 0.5。

car AP @0.7 0.7 0.7

表示的是不同难度情况下算法的平均精度(难度评价根据所标注包围框是否被遮挡、遮挡程度进行评价),AP表示的是平均精度、0.7表示的是最小IOU(交并比),如下图所示:

在这里插入图片描述
当然,不同算法的关于检测指标的代码也有所不同,比如PointPillars的检测指标介绍了coco方式


最后,给大家分享下3D目标检测的结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RNG_uzi_

您的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值