深度学习视觉BEV 3D目标检测算法综述

目录

一、基于深度估计的BEV方法

1.1 LSS算法(Lift, Splat, Shoot,2020)

1.2 BEVDet算法(High-Performance Multi-Camera 3D Object Detection in Bird-Eye-View,2022)

1.3 BEVDet4D算法(Exploit Temporal Cues in Multi-camera 3D Object Detection,2022)

二、基于2D图像检测方法

2.1 FCOS3D(Fully Convolutional One-Stage Monocular 3D Object Detection,2020)

2.2 DETR3D(Object Detection from Multi-View Images via 3D Box Queries,2021)

2.3 DETR4D(Direct Multi-View 3D Object Detection with Sparse Attention,2022)

2.4 PETR(Position Embedding Transformation for Multi-View 3D Object Detection,2022)

2.5 PETRV2(Position Embedding Transformation for Multi-View 3D Object Detection,2022)

2.6 Stream PETR (Stream PETR: Efficient Multi-Frame 3D Object Detection,2023)

2.7 FAR3D(Fast and Robust 3D Object Detection from Multi-View Camera Images,2023)

2.8 SparseBEV(High-Performance Sparse 3D Object Detection from Multi-Camera Videos,2023)

三、基于3D栅格检测方法

3.1 BEVFormer(Learning Bird's-Eye-View Representation from Multi-Camera Images via Spatiotemporal Transformers,2022)

四、总结

4.1 挑战

4.1.1. 深度信息缺失

4.1.2. 多摄像头几何对齐问题

4.1.3. 时间一致性和运动建模

4.1.4. 计算效率问题

4.2 未来提升

4.2.1. 改进深度估计,增强 BEV 3D 表达能力

4.2.2 多模态融合(视觉 + LiDAR / 雷达 / HD-Map)

4.2.3 高效 BEV 计算架构

4.2.4 端到端 BEV 任务学习

4.2.5 BEV 视觉大模型


Bird’s Eye View (BEV) 3D 目标感知算法是当前自动驾驶、智能交通和机器人领域的重要研究方向。BEV 表示能够将 2D 视觉信息转换为鸟瞰视角,使得 3D 目标检测、跟踪和场景理解更符合自动驾驶的需求。作者研究领域为自动驾驶方向,这里主要介绍基于深度学习(主要是transformer)的多视角3D目标检测算法。3D目标检测算法主要包括3类:

基于深度估计的BEV方法:

通过估计每个像素的深度信息(通常是概率分布)将其变换到BEV视图,这是一种比较直观的视图变换方式,LSS和BEVDet都属于这种方式。

基于2D图像检测方法:

另外一种方式是直接在 2D 视图中进行操作,跳过显式 BEV 特征生成,直接输出 BEV 下的 3D 感知结果。这种方法避免了 BEV 变换过程中的信息损失和计算冗余,提高了计算效率,但同时也面临深度估计和几何对齐的挑战,主要算法包括FCOS3D、DETR3D、PETR、Stream PETR以及FAR3D等。

基于3D栅格检测方法:

还有一类方法通过定义3D栅格来建立BEV视图和图像的联系,比如BEVFormer和BEVFusion。这类方法通过3D到2D的映射,将3D栅格上的深度信息隐含的附加到图像像素之上。

下面是nuscences数据集基于纯视觉的3D目标检测排名。

一、基于深度估计的BEV方法

1.1 LSS算法(Lift, Splat, Shoot,2020)

LSS算法是BEV下检测的开山之作,论文通过Lift(升维,主要是2D图像到3D伪点云)、Splat(投影,将3D信息转换到BEV网格)和Shoot(推理,在BEV空间进行推理)完成BEV下的目标检测。具体的算法流程是:多帧图像经过CNN生成图像特征F [B, C, H, W],C是图像的特征维度,将纵向深度划分为K个离散的深度 bin,对于每个像素(u,v)预测该像素属于每个深度 bin 的概率P=Softmax(W⋅F),维度变化为[B, K, H, W],K表示离散的深度。将三维空间划分为体素网格[X, Y, Z],数量为[H', W', D],根据相机投影模型,将2D像素坐标(u,v)和预测的离散深度dk计算为3D体素坐标(X,Y,Z),然后将投影到每个体素网格内的图像特征进行加权,获取3D空间的特征表示,具体公式为V_{\text{feat}}(i_x, i_y, i_z) = \sum_{k=1}^{K} P(d_k | u, v) \cdot I_{\text{feat}}(u, v)。获得的3D空间特征维度为[B, C, H', W', D],向XY平面投影(Splat),也就是聚合Z方向的特征,采用最大池化或者加权平均,最终获得BEV特征,其维度为[B, C, H', W'],然后以BEV特征进行检测。

1.2 BEVDet算法(High-Performance Multi-Camera 3D Object Detection in Bird-Eye-View,2022)

BEVDet以LSS中的视图转换为基础,但是在BEV视图下采用了额外的网络来进一步提取特征,并在此BEV特征的基础上进行3D目标检测。该方法在nuScenes基准测试上取得了非常好的效果,也进一步验证了利用深度估计进行视图转换以及在BEV视图下设计感知算法的有效性。

BEVDet主要包括四个部分。首先是提取图像特征的编码器,可以采用经典的ResNet或者基于注意力的Swin-Trainsformer结构。然后,多幅图像的特征通过LSS中提出的方法转换到BEV视图,在该视图下进行再一次的特征提取。最后,采用CenterPoint中的Head结构来完成3D目标检测任务。

1.3 BEVDet4D算法(Exploit Temporal Cues in Multi-camera 3D Object Detection,2022)

BEVDet4D在BEVDet的基础上扩充了时序融合的功能,其他子模块的实现细节保持与BEVDet一致。为了利用时间信息,BEVDet4D通过保留上一帧中视图转换器生成的BEV特征来扩展BEVDet,上一帧中保留的特征将与当前帧中的特征合并,合并的方式是Concat操作。在合并前,上一帧的特征需要先对齐到当前帧,实验表明,精确的对齐操作有助于提高速度预测的精度。由于视图转换器生成的特征比较稀疏,这对于后续模块来说过于粗糙以至于无法利用时间信息。因此,在时序融合前使用了一个额外的BEV编码器来调整候选特征。这个BEV编码器由两个残差单元组成,其通道数与输入特征的通道数相同。

二、基于2D图像检测方法

2.1 FCOS3D(Fully Convolutional One-Stage Monocular 3D Object Detection,2020)

FCOS3D采用与FCOS完全相同的网络结构,直接在 2D 视图下预测 3D 目标的边界框(3D BBox)以及速度、朝向和尺寸等信息。虽然算法可以端到端输出3D信息,结构简单明了,但是这种直接基于2D图像进行3D深度估计精度不高,尤其是远距离误差较大,难以处理遮挡等复杂场景。

2.2 DETR3D(Object Detection from Multi-View Images via 3D Box Queries,2021)

DETR3D基本上属于基于transformer的3D检测的开山之作,奠定了后续算法的基本框架。与DETR算法类似,首先由骨干网络对每个图像进行特征提取,然后由query随机生成N(300)个查询点,维度为D,表示3D信息,例如x,y,z,w,h,v等。N*D是嵌入向量,在训练过程中逐渐优化,在推理阶段query是固定的,代表在数据集中这些位置出现障碍物的概率很大,需要重点关注这些区域的特征(与2D检测中锚点类似,但是数量会大大减少)。然后通过物理世界(x,y,z)转换到相机坐标(u,v),通过(u,v)查询到目标点对应不同相机不同尺度的特征信息,基于特征信息进行attention,最终输出目标的3D信息。

2.3 DETR4D(Direct Multi-View 3D Object Detection with Sparse Attention,2022)

DETR4D采用与DETR3D类似的架构,但在query生成、query投影方式以及时序融合三个方面进行了提升。

<think>嗯,用户现在想了解或实现BEV下的目标检测方法或模型,特别是算法的实现方案。首先,我需要回忆一下BEV目标检测的基本概念和相关技术。BEV,也就是鸟瞰图视角,在自动驾驶中非常重要,因为它能提供更直观的周围环境感知。不过,用户可能对具体的技术细节不太清楚,所以需要分步骤讲解。 首先,BEV目标检测的主要挑战是什么?根据之前的引用内容,保持BEV Grid的分辨率和计算负担之间需要权衡。如果分辨率高,计算和带宽压力大;如果降低分辨率,感知精度又会受影响。这可能涉及到如何高效地生成BEV特征,同时平衡计算资源。 接下来,常见的BEV目标检测算法有哪些?比如LSS(Lift, Splat, Shoot)、BEVFormer、PointPillars等。这些方法各有特点,需要简单介绍它们的原理和适用场景。例如,LSS通过预测深度分布将图像提升到3D空间,而BEVFormer利用Transformer进行时空特征融合。 然后是实现方案的关键步骤。数据预处理部分,可能需要多相机图像的输入,标定参数,以及点云数据(如果有的话)。网络结构设计部分,包括图像特征提取、视角转换模块、BEV特征处理,以及检测头。视角转换模块是关键,这里需要详细说明不同的方法,如基于深度估计或Transformer的跨注意力机制。 优化策略也很重要。用户可能关心如何平衡计算效率和精度,比如使用稀疏BEV特征或者轻量化网络结构。此外,工程优化如TensorRT加速和混合精度训练也是实际部署中需要考虑的。 在应用场景方面,需要区分车载平台和边缘设备的不同需求。车载可能有更强的计算能力,可以使用更复杂的模型,而边缘设备则需要轻量化设计。 用户可能还会遇到数据融合的问题,比如如何有效结合相机和激光雷达数据。此外,实时性要求和模型精度之间的权衡也是一个常见的挑战,需要根据具体应用场景调整模型结构。 最后,根据用户提供的引用内容,保持BEV Grid的分辨率与计算负担的矛盾,可能需要推荐采用稀疏BEV特征或者动态分辨率调整的方法,这可以作为优化建议的一部分。 总结下来,回答需要涵盖算法分类、实现步骤、优化策略、应用场景以及常见问题,同时结合引用中的关键点,帮助用户全面理解BEV目标检测的实现方案。</think>### BEV目标检测算法实现方案 BEV(鸟瞰图)目标检测是自动驾驶领域的核心技术,其核心挑战在于**如何高效融合多传感器数据并保持感知精度**,尤其在平衡计算资源与分辨率时需谨慎处理[^1]。以下为分步骤实现方案: --- #### 一、核心算法分类 1. **基于视觉的方法** - **LSS (Lift, Splat, Shoot)**: 通过预测像素级深度分布将2D图像"提升"至3D空间,再投影到BEV平面生成特征图,适合多相机融合场景。 $$ z_{bev} = \sum_{i=1}^N \text{Softmax}(d_i) \cdot f_{img}^{(i)} $$ - **BEVFormer**: 使用Transformer的跨注意力机制聚合多视角特征,支持时序融合[^1]。 2. **基于点云的方法** - **PointPillars**: 将点云划分为垂直柱状体(pillar),提取特征后生成伪图像,计算效率较高。 3. **多模态融合方法** 结合相机与激光雷达数据,如**MVFusion**通过跨模态注意力机制对齐特征。 --- #### 二、实现关键步骤 1. **数据预处理** - 多相机图像输入(需标定内外参) - 点云数据体素化(若使用雷达) ```python # 点云体素化示例 from spconv.utils import VoxelGenerator voxel_generator = VoxelGenerator(voxel_size=[0.1,0.1,0.2], point_cloud_range=[-50,-50,-3,50,50,1]) ``` 2. **网络结构设计** ```mermaid graph TD A[多视角图像] --> B[CNN特征提取] B --> C[视角转换模块] C --> D[BEV特征图] D --> E[3D检测头] ``` 3. **视角转换模块实现** - **基于深度估计**(LSS方案): ```python class DepthDistribution(nn.Module): def forward(self, img_feat): depth_prob = self.conv(img_feat) # 预测深度概率分布 return depth_prob.softmax(dim=1) ``` - **基于Transformer**(BEVFormer方案): ```python class SpatialCrossAttention(nn.Module): def forward(self, bev_query, img_feat): attn = torch.einsum('bqc,bchw->bqhw', bev_query, img_feat) return torch.matmul(attn.softmax(dim=-1), img_feat) ``` 4. **优化策略** - **稀疏BEV特征**:仅对可能存在目标的区域进行高分辨率采样 - **轻量化设计**:使用MobileNetV3等轻量骨干网络 - **知识蒸馏**:用大模型指导小模型训练 --- #### 三、典型应用场景 | 场景类型 | 推荐算法 | 分辨率需求 | 硬件要求 | |---------|----------|------------|----------| | 车载计算平台 | BEVFormer | 0.1m/像素 | GPU >= 30TOPS | | 边缘设备 | PointPillars | 0.2m/像素 | FPGA/低功耗GPU | --- #### 四、常见问题与解决方案 1. **视角转换中的特征丢失** - 问题:图像到BEV的投影导致边缘信息丢失 - 方案:在转换模块中添加可变形卷积(Deformable Conv) 2. **多相机特征对齐困难** - 问题:不同相机的光照/遮挡差异 - 方案:引入基于注意力机制的特征校准模块 3. **实时性不足** - 问题:BEV特征图计算延迟高 - 方案:使用预计算深度分布+查找表加速 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值