向量与行列式笔记

在这里插入图片描述

向量是指具有大小和方向的量,在物理学中,通常将向量称为矢量
标量是指只有大小的量,在物理学中,也叫做标量
在这里插入图片描述
箭头的方向表示向量的方向,线段则表示向量的大小
向量的众多特性可以是很多概念得到简化

一,向量

1,向量的表示

  • 直角坐标系表示:带箭头的线段
  • 印刷体表示:粗体字母 ,如abD
  • 手写体表示:字母上加一个向右的箭头,如 a ⃗ \vec{a} a b ⃗ \vec{b} b D ⃗ \vec{D} D
  • 代数表示: a = < x 1 , x 2 > = ( x 1 , x 2 ) = ( x 1 x 2 ) = [ x 1 x 2 ] a=<x_1,x_2>=(x_1,x_2)=\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} a=<x1,x2>=(x1,x2)=(x1x2)=[x1x2]
  • 模的表示: ∣ a ∣ = x 1 2 + x 2 2 |a|=\sqrt{x_1^2+x_2^2} a=x12+x22

2,维度和分量

首先这里可以打开思路,有人问我,你能想象四维的空间吗?不能想象就别乱说了。我的确想象不出来,的确我也不能再平面上画出一个四维的空间,但是这里的维度是 数 学 层 面 \color{red}{数学层面} 的!
每一个维度都可以代表任意我们能想象到的事物,这里的维度完全取决与我们对每个维度的定义!

  • 每个维度中的内容:数字、文字或是其他符号都可以
  • 不同维度的表示: n n n维空间用 R n R^n Rn表示,如二维空间 R 2 R^2 R2、三维空间 R 3 R^3 R3
  • 维度的分量:向量在其中一个维度上的值成为该维度的分量,如 R 3 R^3 R3空间的向量 a ⃗ = ( 1 , 2 , 9 ) \vec{a}=(1,2,9) a =(1,2,9),那么 a ⃗ \vec{a} a 再三个维度的分量分别是1,2,9

3,零向量和单位向量

  • 零向量:长度为零的向量,与任何向量平行,可记作 O O O Z Z Z(zero), O = [ 0 0 0 ] , O ∈ R 3 O=\begin{bmatrix} 0 \\ 0 \\0\end{bmatrix},O\in R^3 O=000,OR3
  • 单位向量:一个非零向量除以它的模,得到单位向量, N = a ∣ a ∣ N= \frac {a} {|a|} N=aa

二,向量的运算

1,加减法

①加法

向量的加法很简单,将相同维度的向量依次相加就行了

简单举个例子:

a = [ a 1 a 2 a 3 ] , b = [ b 1 b 2 b 3 ] , a + b = [ a 1 + b 1 a 2 + b 2 a 3 + b 3 ] a = \begin{bmatrix} a_1 \\ a_2 \\a_3\end{bmatrix},b=\begin{bmatrix}b_1\\b_2\\b3\end{bmatrix},a+b=\begin{bmatrix}a_1+b_1\\a_2+b_2\\a_3+b_3\end{bmatrix} a=a1a2a3,b=b1b2b3,a+b=a1+b1a2+b2a3+b3

②减法

和加法一样简单,把相同维度的向量依次相减即可

简单举个例子:

a = [ a 1 a 2 a 3 ] , b = [ b 1 b 2 b 3 ] , a − b = [ a 1 − b 1 a 2 − b 2 a 3 − b 3 ] a = \begin{bmatrix} a_1 \\ a_2 \\a_3\end{bmatrix},b=\begin{bmatrix}b_1\\b_2\\b3\end{bmatrix},a-b=\begin{bmatrix}a_1-b_1\\a_2-b_2\\a_3-b_3\end{bmatrix} a=a1a2a3,b=b1b2b3,ab=a1b1a2b2a3b3

2,数乘

向量乘上一个标量就可以组成数乘的运算

简单举个例子:
v = [ 7 9 ] , v × 2 = [ 14 18 ] , v × − 6 = [ − 42 − 54 ] v=\begin{bmatrix}7\\9\end{bmatrix},v\times2=\begin{bmatrix}14\\18\end{bmatrix},v\times-6=\begin{bmatrix}-42\\-54\end{bmatrix} v=[79]v×2=[1418]v×6=[4254]

3,点积

从向量角度看, 对应点对应积的和就是点积运算,点积的结果是标量

简单举个例子:
a = [ a 1 a 2 a 3 ] , b = [ b 1 b 2 b 3 ] , a ⋅ b = a 1 × b 1 + a 2 × b 2 + a 3 × b 3 = ∑ i = 1 3 a i b i a=\begin{bmatrix}a_1\\a_2\\a_3\end{bmatrix},b=\begin{bmatrix}b_1\\b_2\\b_3\end{bmatrix},a\cdot b=a_1\times b_1+a_2\times b_2+a_3\times b_3=\sum_{i=1}^3 {a_ib_i} a=a1a2a3,b=b1b2b3,ab=a1×b1+a2×b2+a3×b3=i=13aibi

从几何角度看,对应的模乘夹角余弦

a ⋅ b = ∣ a ∣ ∣ b ∣ c o s θ a\cdot b=|a||b|cos\theta ab=abcosθ

4,叉积

二维空间中,叉积的定义如下

a = [ a 1 a 2 ] , b = [ b 1 b 2 ] a=\begin{bmatrix}a_1\\a_2\end{bmatrix},b=\begin{bmatrix}b_1\\b_2\end{bmatrix} a=[a1a2],b=[b1b2]
a × b = ∣ a 1 a 2 b 1 b 2 ∣ = a 1 b 2 − a 2 b 1 a\times b=\begin{vmatrix}a_1&a_2\\b_1&b_2\end{vmatrix}=a_1b_2-a_2b_1 a×b=a1b1a2b2=a1b2a2b1
叉积的结果是向量

从几何角度看,叉积的模等于对应的模乘夹角正弦

a × b = ∣ a ∣ ∣ b ∣ s i n θ a\times b=|a||b|sin\theta a×b=absinθ

三,行列式

1,组成

行列式是由向量组成的式子,是一种运算,结果为向量

如上面的叉积就是一个简单的二阶行列式:

∣ a 1 a 2 b 1 b 2 ∣ \begin{vmatrix}a_1&a_2\\b_1&b_2\end{vmatrix} a1b1a2b2

2,性质

  1. 单位矩阵的行列式为1
  2. 如果 D n = d e t ( A ) D_n=det(A) Dn=det(A)中某行的元素全为0,那么 D n = 0 D_n=0 Dn=0
  3. 如果 D n = d e t ( A ) D_n=det(A) Dn=det(A)中某两行元素对应成比例,那么 D n = 0 D_n=0 Dn=0
  4. 如果 D n = d e t ( A ) D_n=det(A) Dn=det(A)中某两行互换,那么互换后的行列式编号,即 d e t ( A ) = − d e t ( A ) det(A)=-det(A) det(A)=det(A)
  5. 倍乘性质: d e t ( k A n × n ) = k n d e t ( A n × n ) det(kA_{n\times n})=k^ndet(A_{n\times n}) det(kAn×n)=kndet(An×n)
  6. 倍加性质: ∣ a 1 a 2 b 1 b 2 ∣ = ∣ a 1 a 2 b 1 + k a 1 b 2 + k a 1 ∣ \begin{vmatrix}a_1&a_2\\b_1&b_2\end{vmatrix}=\begin{vmatrix}a_1&a_2\\b_1+ka_1&b_2+ka_1\end{vmatrix} a1b1a2b2=a1b1+ka1a2b2+ka1
  7. 单行(列)可拆(加)性: ∣ ∗ a 1 a 2 a 3 ∗ ∣ + ∣ ∗ b 1 b 2 b 3 ∗ ∣ = ∣ ∗ a 1 + b 1 a 2 + b 2 a 3 + b 3 ∗ ∣ \begin{vmatrix}*\\a_1&a_2&a_3\\* \end{vmatrix}+\begin{vmatrix}*\\b_1&b_2&b_3\\* \end{vmatrix}=\begin{vmatrix}*\\a_1+b_1&a_2+b_2&a_3+b_3\\* \end{vmatrix} a1a2a3+b1b2b3=a1+b1a2+b2a3+b3
  8. 两个矩阵相乘的行列式,等于这两个矩阵的行列式相乘: d e t ( A 2 ) = ( d e t ( A ) ) 2 det(A^2)=(det(A))^2 det(A2)=(det(A))2

3,意义

线性代数研究向量之间的关系,最重要的关系就是独立或不独立,行列式等于0即向量独立,即对应方程组有唯一解

4,计算

上(下)三角矩阵的行列式等于主对角元素的乘积

计算原则:利用行列式的性质化简成上(下)三角矩阵的样子,然后计算乘积

通过公式:
d e t ( A ) = ∑ n ! ± a 1 α a 2 β a 3 γ ⋅ ⋅ ⋅ a n ω det(A)=\sum_{n!}\pm a_{1\alpha}a_{2\beta}a_{3\gamma}\cdot \cdot \cdot a_{n\omega} det(A)=n!±a1αa2βa3γanω

四,代数余子式

代数余子式优点像俄罗斯套娃,可以把行列式的阶数一直打开到只剩一阶(一个数)
在这里插入图片描述

什么是代数余子式,举个例子:
三阶行列式的计算公式如下
d e t ( A ) = a 11 ( a 22 a 33 − a 23 a 32 ) − a 12 ( a 21 a 33 − a 23 a 31 ) + a 13 ( a 21 a 32 − a 22 a 31 ) det(A)=a_{11}(a_{22}a_{33}-a_{23}a_{32})-a_{12}(a_{21}a_{33}-a_{23}a_{31})+a_{13}(a_{21}a_{32}-a_{22}a_{31}) det(A)=a11(a22a33a23a32)a12(a21a33a23a31)+a13(a21a32a22a31)

1,代数余子式公式:

d e t ( A ) = a 11 C 11 + a 12 C 12 + ⋅ ⋅ ⋅ + a 1 n C 1 n = ∑ i = 1 n a 1 i C 1 i det(A)=a_{11}C_{11}+a_{12}C_{12}+\cdot \cdot \cdot +a_{1n}C_{1n}=\sum_{i=1}^{n}a_{1i}C_{1i} det(A)=a11C11+a12C12++a1nC1n=i=1na1iC1i

C x y C_{xy} Cxy就是 a x y a_{xy} axy的代数余子式,若 x + y x+y x+y为奇数, a x y a_{xy} axy为负数

五,结束语:以上内容如有错误或不妥欢迎指出,谢谢!

小白学识有限,难免无不妥之处,欢迎批评指正!

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值