【考研数学一·线性代数(1)】行列式

1.行列式的定义

1.1.本质定义

n n n阶行列式 D n = ∣ a 11 ⋯ a 1 n ⋮ ⋮ a n 1 ⋯ a n n ∣ D_n=\left\vert\begin{matrix}a_{11}&\cdots &a_{1n}\\\vdots&&\vdots\\a_{n1}&\cdots &a_{nn}\end{matrix}\right\vert Dn= a11an1a1nann 是由 n n n n n n维列向量 α 1 = [ a 11 , a 12 , ⋯   , a 1 n ] ⋯ α n = [ a n 1 , a n 2 , ⋯   , a n n ] \alpha_1=[a_{11},a_{12},\cdots,a_{1n}]\cdots\alpha_n=[a_{n1},a_{n2},\cdots,a_{nn}] α1=[a11,a12,,a1n]αn=[an1,an2,,ann]组成的,其结果是以这 n n n个向量为邻边的 n n n维图形的(有向)体积.

1.2.逆序数法定义

∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∑ j 1 j 2 ⋯ j n ( − 1 ) τ ( j 1 j 2 ⋯ j n ) a 1 j 1 a 2 j 2 ⋯ a n j n       ( 共 n ! 项 ) ( n ⩾ 2 ) \left|\begin{matrix} a_{11}&a_{12}&\cdots&a_{1n} \\a_{21}&a_{22}&\cdots&a_{2n} \\\vdots&\vdots&&\vdots \\a_{n1}&a_{n2}&\cdots&a_{nn} \end{matrix}\right| =\sum\limits_{j_1j_2\cdots j_n}(-1)^{\tau(j_1j_2\cdots j_n)}a_{1j_1}a_{2j_2}\cdots a_{nj_n}~~~~~(共n!项)(n\geqslant2) a11a21an1a12a22an2a1na2nann =j1j2jn(1)τ(j1j2jn)a1j1a2j2anjn     (n!)(n2)

2.行列式的性质

  1. 行列互换,其值不变.

  2. 行列式中某行(列)元素全为零,则行列式为零.

  3. 行列式中的两行(列)元素相等或对应成比例,则行列式为零.

  4. 行列式中某行(列)元素均是两个元素之和,则可以拆成两个行列式.

    ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 + b i 1 a i 2 + b i 2 ⋯ a i n + b i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ + ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ b i 1 b i 2 ⋯ b i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ \left|\begin{matrix}a_{11}&a_{12}&\cdots&a_{1n}\\\vdots&\vdots&&\vdots\\a_{i1}+b_{i1}&a_{i2}+b_{i2}&\cdots&a_{in}+b_{in}\\\vdots&\vdots&&\vdots\\a_{n1}&a_{n2}&\cdots&a_{nn}\end{matrix}\right|=\left|\begin{matrix}a_{11}&a_{12}&\cdots&a_{1n}\\\vdots&\vdots&&\vdots\\a_{i1}&a_{i2}&\cdots&a_{in}\\\vdots&\vdots&&\vdots\\a_{n1}&a_{n2}&\cdots&a_{nn}\end{matrix}\right|+\left|\begin{matrix}a_{11}&a_{12}&\cdots&a_{1n}\\\vdots&\vdots&&\vdots\\b_{i1}&b_{i2}&\cdots&b_{in}\\\vdots&\vdots&&\vdots\\a_{n1}&a_{n2}&\cdots&a_{nn}\end{matrix}\right| a11ai1+bi1an1a12ai2+bi2an2a1nain+binann = a11ai1an1a12ai2an2a1nainann + a11bi1an1a12bi2an2a1nbinann

  5. 行列式中两行(列)互换,行列式的值反号.

  6. 只乘一行(列)!!(倍乘)

    ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ k a i 1 k a i 2 ⋯ k a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = k ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ \left|\begin{matrix} a_{11}&a_{12}&\cdots&a_{1n} \\\vdots&\vdots&&\vdots \\ka_{i1}&ka_{i2}&\cdots&ka_{in} \\\vdots&\vdots&&\vdots \\a_{n1}&a_{n2}&\cdots&a_{nn} \end{matrix}\right| =k \left|\begin{matrix} a_{11}&a_{12}&\cdots&a_{1n} \\\vdots&\vdots&&\vdots \\a_{i1}&a_{i2}&\cdots&a_{in} \\\vdots&\vdots&&\vdots \\a_{n1}&a_{n2}&\cdots&a_{nn} \end{matrix}\right| a11kai1an1a12kai2an2a1nkainann =k a11ai1an1a12ai2an2a1nainann

  7. 行列式中某行(列)的 k k k倍加到另一行(列),行列式的值不变。(倍加)

3.行列式的展开定理

3.1.余子式

M i j = ∣ a 11 ⋯ a 1 , j − 1 a 1 , j + 1 ⋯ a 1 n ⋮ ⋮ ⋮ ⋮ a i − 1 , 1 ⋯ a i − 1 , j − 1 a i − 1 , j + 1 ⋯ a i − 1 , n a i + 1 , 1 ⋯ a i + 1 , j − 1 a i + 1 , j + 1 ⋯ a i + 1 , n ⋮ ⋮ ⋮ ⋮ a n 1 ⋯ a n , j − 1 a n , j + 1 ⋯ a n n ∣ M_{ij}= \left|\begin{matrix} a_{11}&\cdots&a_{1,j-1}&a_{1,j+1}&\cdots&a_{1n} \\\vdots&&\vdots&\vdots&&\vdots \\a_{i-1,1}&\cdots&a_{i-1,j-1}&a_{i-1,j+1}&\cdots&a_{i-1,n} \\a_{i+1,1}&\cdots&a_{i+1,j-1}&a_{i+1,j+1}&\cdots&a_{i+1,n} \\\vdots&&\vdots&\vdots&&\vdots \\a_{n1}&\cdots&a_{n,j-1}&a_{n,j+1}&\cdots&a_{nn} \end{matrix}\right| Mij= a11ai1,1ai+1,1an1a1,j1ai1,j1ai+1,j1an,j1a1,j+1ai1,j+1ai+1,j+1an,j+1a1nai1,nai+1,nann

3.2.代数余子式

A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij

3.3.行列式按某一行(列)展开的展开公式

∣ A ∣ = { a i 1 A i 1 + a i 2 A i 2 + ⋯ + a i n A i n = ∑ j = 1 n a i j A i j ( i = 1 , 2 , ⋯   , n ) a 1 j A 1 j + a 2 j A 2 j + ⋯ + a n j A n j = ∑ i = 1 n a i j A i j ( j = 1 , 2 , ⋯   , n ) { a i 1 A k 1 + a i 2 A k 2 + ⋯ + a i n A k n = 0 ( i ≠ k ) a 1 j A 1 k + a 2 j A 2 k + ⋯ + a n j A n k = 0 ( j ≠ k ) |A|= \begin{cases} a_{i1}A_{i1}+a_{i2}A_{i2}+\cdots+a_{in}A_{in}=\sum\limits_{j=1}^na_{ij}A_{ij}(i=1,2,\cdots,n) \\a_{1j}A_{1j}+a_{2j}A_{2j}+\cdots+a_{nj}A_{nj}=\sum\limits_{i=1}^na_{ij}A_{ij}(j=1,2,\cdots,n) \end{cases} \\ \begin{cases} a_{i1}A_{k1}+a_{i2}A_{k2}+\cdots+a_{in}A_{kn}=0(i\ne k) \\a_{1j}A_{1k}+a_{2j}A_{2k}+\cdots+a_{nj}A_{nk}=0(j\ne k) \end{cases} A= ai1Ai1+ai2Ai2++ainAin=j=1naijAij(i=1,2,,n)a1jA1j+a2jA2j++anjAnj=i=1naijAij(j=1,2,,n){ai1Ak1+ai2Ak2++ainAkn=0(i=k)a1jA1k+a2jA2k++anjAnk=0(j=k)

4.几个重要行列式

4.1.主对角线行列式

∣ a 11 a 12 ⋯ a 1 n 0 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ 0 0 ⋯ a n n ∣ = ∣ a 11 0 ⋯ 0 a 21 a 22 ⋯ 0 ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∣ a 11 0 ⋯ 0 0 a 22 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ a n n ∣ = ∏ i = 1 n a i i \left|\begin{matrix} a_{11}&a_{12}&\cdots&a_{1n} \\0&a_{22}&\cdots&a_{2n} \\\vdots&\vdots&&\vdots \\0&0&\cdots&a_{nn} \end{matrix}\right|= \left|\begin{matrix} a_{11}&0&\cdots&0 \\a_{21}&a_{22}&\cdots&0 \\\vdots&\vdots&&\vdots \\a_{n1}&a_{n2}&\cdots&a_{nn} \end{matrix}\right|= \left|\begin{matrix} a_{11}&0&\cdots&0 \\0&a_{22}&\cdots&0 \\\vdots&\vdots&&\vdots \\0&0&\cdots&a_{nn} \end{matrix}\right|= \prod\limits_{i=1}^na_{ii} a1100a12a220a1na2nann = a11a21an10a22an200ann = a11000a22000ann =i=1naii

4.2.副对角线行列式

∣ a 11 ⋯ a 1 , n − 1 a 1 n a 21 ⋯ a 2 , n − 1 0 ⋮ ⋮ ⋮ a n 1 ⋯ 0 0 ∣ = ∣ 0 ⋯ 0 a 1 n 0 ⋯ a 2 , n − 1 a 2 n ⋮ ⋮ ⋮ a n 1 ⋯ a n , n − 1 a n n ∣ = ∣ 0 ⋯ 0 a 1 n 0 ⋯ a 2 , n − 1 0 ⋮ ⋮ ⋮ a n 1 ⋯ 0 0 ∣ = ( − 1 ) n ( n − 1 ) 2 a 1 n a 2 , n − 1 ⋯ a n 1 \left|\begin{matrix} a_{11}&\cdots&a_{1,n-1}&a_{1n} \\a_{21}&\cdots&a_{2,n-1}&0 \\\vdots&&\vdots&\vdots \\a_{n1}&\cdots&0&0 \end{matrix}\right|= \left|\begin{matrix} 0&\cdots&0&a_{1n} \\0&\cdots&a_{2,n-1}&a_{2n} \\\vdots&&\vdots&\vdots \\a_{n1}&\cdots&a_{n,n-1}&a_{nn} \end{matrix}\right|= \left|\begin{matrix} 0&\cdots&0&a_{1n} \\0&\cdots&a_{2,n-1}&0 \\\vdots&&\vdots&\vdots \\a_{n1}&\cdots&0&0 \end{matrix}\right| =(-1)^{\frac{n(n-1)}{2}}a_{1n}a_{2,n-1}\cdots a_{n1} a11a21an1a1,n1a2,n10a1n00 = 00an10a2,n1an,n1a1na2nann = 00an10a2,n10a1n00 =(1)2n(n1)a1na2,n1an1

4.3.拉普拉斯展开式

A A A m m m阶矩阵, B B B n n n阶矩阵
∣ A O O B ∣ = ∣ A C O B ∣ = ∣ A O C B ∣ = ∣ A ∣ ∣ B ∣ ∣ O A B O ∣ = ∣ C A B O ∣ = ∣ O A B C ∣ = ( − 1 ) m n ∣ A ∣ ∣ B ∣ \left| \begin{matrix} A&O \\O&B \end{matrix} \right|= \left| \begin{matrix} A&C \\O&B \end{matrix} \right|= \left| \begin{matrix} A&O \\C&B \end{matrix} \right| =|A||B| \\ \left| \begin{matrix} O&A \\B&O \end{matrix} \right|= \left| \begin{matrix} C&A \\B&O \end{matrix} \right|= \left| \begin{matrix} O&A \\B&C \end{matrix} \right| =(-1)^{mn}|A||B| AOOB = AOCB = ACOB =A∣∣B OBAO = CBAO = OBAC =(1)mnA∣∣B

4.4.范德蒙德行列式

∣ 1 1 ⋯ 1 x 1 x 2 ⋯ x n x 1 2 x 2 2 ⋯ x n 2 ⋮ ⋮ ⋮ x 1 n − 1 x 2 n − 1 ⋯ x n n − 1 ∣ = ∏ 1 ⩽ i < j ⩽ n ( x j − x i ) , n ⩾ 2 \left| \begin{matrix} 1&1&\cdots&1 \\x_1&x_2&\cdots&x_n \\x_1^2&x_2^2&\cdots&x_n^2 \\\vdots&\vdots&&\vdots \\x_1^{n-1}&x_2^{n-1}&\cdots&x_n^{n-1} \end{matrix} \right| =\prod\limits_{1\leqslant i<j\leqslant n}(x_j-x_i),n\geqslant2 1x1x12x1n11x2x22x2n11xnxn2xnn1 =1i<jn(xjxi),n2

5.行列式的计算

5.1.具体型

  1. 化为基本形行列式

    { 直接展开——某行 ( 列 ) 有最多 0 元素且阶数较低 爪形——用斜爪消去平 / 竖爪 异爪形——阶数低可直接展开;递推法 行 ( 列 ) 和相等——所有列 ( 行 ) 加到某一行 ( 列 ) , 提公因式 消 0 化主 ( 副 ) 对角线形 拉普拉斯展开式 范德蒙德行列式 \begin{cases}直接展开——某行(列)有最多0元素且阶数较低\\爪形——用斜爪消去平/竖爪\\异爪形——阶数低可直接展开;递推法\\行(列)和相等——所有列(行)加到某一行(列),提公因式\\消0化主(副)对角线形\\拉普拉斯展开式\\范德蒙德行列式\end{cases} 直接展开——某行()有最多0元素且阶数较低爪形——用斜爪消去平/竖爪异爪形——阶数低可直接展开;递推法()和相等——所有列()加到某一行(),提公因式0化主()对角线形拉普拉斯展开式范德蒙德行列式

  2. 加边法

    D n = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∣ 1 ∗ ∗ ⋯ ∗ 0 a 11 a 12 ⋯ a 1 n 0 a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ 0 a n 1 a n 2 ⋯ a n n ∣ D_n= \left|\begin{matrix} a_{11}&a_{12}&\cdots&a_{1n} \\a_{21}&a_{22}&\cdots&a_{2n} \\\vdots&\vdots&&\vdots \\a_{n1}&a_{n2}&\cdots&a_{nn} \end{matrix}\right|= \left|\begin{matrix} 1&*&*&\cdots&* \\0&a_{11}&a_{12}&\cdots&a_{1n} \\0&a_{21}&a_{22}&\cdots&a_{2n} \\\vdots&\vdots&\vdots&&\vdots \\0&a_{n1}&a_{n2}&\cdots&a_{nn} \end{matrix}\right| Dn= a11a21an1a12a22an2a1na2nann = 1000a11a21an1a12a22an2a1na2nann

  3. 递推法(高阶 → \to 低阶)

    D n − 1 D_{n-1} Dn1 D n D_n Dn要有完全相同的元素分布规律

  4. 数学归纳法(低阶 → \to 高阶)

    • 第一数学归纳法( F ( D n , D n − 1 ) = 0 F(D_n,D_{n-1})=0 F(Dn,Dn1)=0)
      1. 验证 n = 1 n=1 n=1时,命题成立
      2. 假设 n = k ( ⩾ 2 ) n=k(\geqslant2) n=k(2)时,命题成立
      3. 证明 n = k + 1 n=k+1 n=k+1时,命题成立
    • 第二数学归纳法( F ( D n , D n − 1 , D n − 2 ) = 0 F(D_n,D_{n-1},D_{n-2})=0 F(Dn,Dn1,Dn2)=0)
      1. 验证 n = 1 n=1 n=1 n = 2 n=2 n=2时,命题成立
      2. 假设 n < k n<k n<k时,命题成立
      3. 证明 n = k ( ⩾ 3 ) n=k(\geqslant3) n=k(3)时,命题成立

5.2.抽象型

  1. 用行列式的性质
  2. 用矩阵知识
    • C = A B ⇒ ∣ C ∣ = ∣ A B ∣ = ∣ A ∣ ∣ B ∣ C=AB\Rightarrow|C|=|AB|=|A||B| C=ABC=AB=A∣∣B
    • C = A + B ⇒ ∣ C ∣ = ∣ A + B ∣ C=A+B\Rightarrow|C|=|A+B| C=A+BC=A+B,对 ∣ A + B ∣ |A+B| A+B作恒等变形,转化为矩阵乘积的行列式. { 由题设条件如 E = A A T 用 E = A A − 1 \begin{cases}由题设条件如E=AA^T\\用E=AA^{-1}\end{cases} {由题设条件如E=AATE=AA1
    • 矩阵的其他公式、性质
  3. 用相似理论
    • ∣ A ∣ = ∏ i = 1 n λ i |A|=\prod\limits_{i=1}^n\lambda_i A=i=1nλi
    • A A A相似于 B ⇒ ∣ A ∣ = ∣ B ∣ B\Rightarrow|A|=|B| BA=B

5.3.余子式和代数余子式的计算

5.3.1.用行列式

a i 1 A i 1 + a i 2 A i 2 + ⋯ + a i n A i n = ∣ ∗ a i 1    a i 2    ⋯    a i n ∗ ∣ ⇓ k 1 A i 1 + k 2 A i 2 + ⋯ + k n A i n = ∣ ∗ k 1    k 2    ⋯    k n ∗ ∣ a_{i1}A_{i1}+a_{i2}A_{i2}+\cdots+a_{in}A_{in}= \left| \begin{matrix} * \\a_{i1}~~a_{i2}~~\cdots~~a_{in} \\ * \end{matrix} \right| \\\Downarrow \\ k_1A_{i1}+k_2A_{i2}+\cdots+k_nA_{in}= \left| \begin{matrix} * \\k_1~~k_2~~\cdots~~k_n \\ * \end{matrix} \right| ai1Ai1+ai2Ai2++ainAin= ai1  ai2    ain k1Ai1+k2Ai2++knAin= k1  k2    kn

5.3.2.用矩阵

∣ A ∣ ≠ 0 时 , A ∗ = ∣ A ∣ A − 1 A ∗ = ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n ⋯ A n n ) |A|\ne0时,A^*=|A|A^{-1} \\ A^*= \left( \begin{matrix} A_{11}&A_{21}&\cdots&A_{n1} \\A_{12}&A_{22}&\cdots&A_{n2} \\\vdots&\vdots&&\vdots \\A_{1n}&A_{2n}&\cdots&A_{nn} \end{matrix} \right) A=0,A=AA1A= A11A12A1nA21A22A2nAn1An2Ann

5.3.3.用特征值

A 为可逆矩阵 , A 的特征值为 λ i , A ∗ 的特征值为 ∣ A ∣ λ i = λ 1 λ 2 ⋯ λ n λ i = ∏ k ≠ i λ k ( i = 1 , 2 , ⋯   , n ) A ∗ = ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n ⋯ A n n ) ∑ i = 1 n A i i = t r ( A ∗ ) = ∑ i = 1 n ∏ k ≠ i λ k A 11 + A 22 + A 33 = λ 2 λ 3 + λ 1 λ 3 + λ 1 λ 2 A为可逆矩阵,A的特征值为\lambda_i,A^*的特征值为\frac{|A|}{\lambda_i}=\frac{\lambda_1\lambda_2\cdots\lambda_n}{\lambda_i}=\prod\limits_{k\ne i}\lambda_k(i=1,2,\cdots,n) \\A^*= \left( \begin{matrix} A_{11}&A_{21}&\cdots&A_{n1} \\A_{12}&A_{22}&\cdots&A_{n2} \\\vdots&\vdots&&\vdots \\A_{1n}&A_{2n}&\cdots&A_{nn} \end{matrix} \right) \\\sum\limits_{i=1}^nA_{ii}=tr(A^*)=\sum\limits_{i=1}^n\prod\limits_{k\ne i}\lambda_k \\A_{11}+A_{22}+A_{33}=\lambda_2\lambda_3+\lambda_1\lambda_3+\lambda_1\lambda_2 A为可逆矩阵,A的特征值为λi,A的特征值为λiA=λiλ1λ2λn=k=iλk(i=1,2,,n)A= A11A12A1nA21A22A2nAn1An2Ann i=1nAii=tr(A)=i=1nk=iλkA11+A22+A33=λ2λ3+λ1λ3+λ1λ2

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值