笔记-b站刘二大人《pytorch深度学习实践》-第十讲

第十讲-卷积神经网络(基础篇)

卷积神经网络的输入、输出及卷积核

convolutional layer,设置输入的宽和高都是100,输入、输出的通道数分别是5和10,卷积核大小为3*3,batchsize为1,测试输入和输出的维度以及卷积层权重的形状。

import torch
in_channels,out_channels = 5,10  #分别为n,m
width , height = 100,100
kernel_size = 3  #卷积核大小
batch_size =1    #输入必须是小批量的数据

input = torch.randn(batch_size,
                    in_channels,
                    width,
                    height)   #randn:从标准正态分布的采样的随机数 B,n,w,h

conv_layer = torch.nn.Conv2d(in_channels,out_channels, kernel_size = kernel_size)

output = conv_layer(input)

print(input.shape)
print(output.shape)
print(conv_layer.weight.shape)

输出:

Padding

padding=1时,把input周围扩了一圈0,如下图。

编程检验一下:

import torch

input = [3,4,6,5,7,
         2,4,6,8,2,
         1,6,7,8,4,
         9,7,4,6,2,
         3,7,5,4,1]

input = torch.Tensor(input).view(1,1,5,5)  #view(B,C,W,H)
#torch.Tesor:直接根据数据创建Tensor,pytorch的view()相当于numpy中的resize()函数,用来重构(或调整)张量维度。

conv_layer = torch.nn.Conv2d(1,1,kernel_size=3,padding=1,bias=False) #不加偏置量,卷积本质上也是线性计算

kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1,1,3,3)  #(输出通道,输入通道,W,H)
conv_layer.weight.data = kernel.data #权重的值赋过去

output = conv_layer(input)
print(output)
print(output.shape)

输出: 

Stride

stride=2时,跳两步,Conv2d函数中默认stride=1。如下图。这里padding不设值,默认0。

编程检验一下,跟上个代码只变Conv2d函数中的赋值:

import torch

input = [3,4,6,5,7,
         2,4,6,8,2,
         1,6,7,8,4,
         9,7,4,6,2,
         3,7,5,4,1]

input = torch.Tensor(input).view(1,1,5,5)  #view(B,C,W,H)
#torch.Tesor:直接根据数据创建Tensor,pytorch的view()相当于numpy中的resize()函数,用来重构(或调整)张量维度。

conv_layer = torch.nn.Conv2d(1,1,kernel_size=3,bias=False,stride=2) #不加偏置量,卷积本质上也是线性计算

kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1,1,3,3)  #(输出通道,输入通道,W,H)
conv_layer.weight.data = kernel.data #权重的值赋过去

output = conv_layer(input)
print(output)
print(output.shape)

输出:

Max Pooling

下采样,用的较多的是最大池化Max Pooling,通道数不变,默认stride=2。如下图。注意,最大池化没有卷积核。

编程实现:

import torch

input = [3,4,6,5,
         2,4,6,8,
         1,6,7,8,
         9,7,4,6]

input = torch.Tensor(input).view(1,1,4,4)  #view(B,C,W,H)
#torch.Tesor:直接根据数据创建Tensor,pytorch的view()相当于numpy中的resize()函数,用来重构(或调整)张量维度。

maxpooling_layer = torch.nn.MaxPool2d(kernel_size=2) #不加偏置量,卷积本质上也是线性计算

output = maxpooling_layer(input)
print(output)
print(output.shape)

输出:

Simple CNN-MNIST

然后编写一个基于MNIST数据集的简单CNN网络,计算图:

 代码:

 train、test模块和上一讲基本一样,只是加入了Move Tensors to GPU的代码

import torch
from torch.utils.data import DataLoader
from torchvision import transforms   #针对图像进行处理的工具包
from torchvision import datasets
import torch.nn.functional as F  #for using ReLU

batch_size = 64
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,),(0.3081,))])

train_dataset = datasets.MNIST(root='../dataset/mnist',train=True,transform=transform,download=True)  #mnist为28*28大小的灰度图像
test_dataset = datasets.MNIST(root='../dataset/mnist',train=False,transform=transform,download=True)

train_loader = DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True)   #打乱->shuffle=true,训练要打乱
test_loader = DataLoader(dataset=test_dataset,batch_size=batch_size,shuffle=False)    #测试不用shuffle,可以观察结果

class Net(torch.nn.Module):
    def __init__(self):    #定义需要调用的函数
        super(Net,self).__init__()
        self.conv1 = torch.nn.Conv2d(1,10,kernel_size=5)     #卷积1
        self.conv2 = torch.nn.Conv2d(10, 20,kernel_size=5)   #卷积2
        self.pool= torch.nn.MaxPool2d(kernel_size=2)         #池化
        self.fc = torch.nn.Linear(320,10)                    #全连接

    def forward(self,x):
        #Flatten data from(n,1,28,28) to (n,784)
        batch_size = x.size(0)
        x = self.pool(F.relu(self.conv1(x)))     #relu作为激活函数,先卷积再ReLU再池化
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(batch_size,-1)    #flatten,展平
        x = self.fc(x)   #要用交叉熵损失,所以最后一层不做激活
        return x

model = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#使用GPU,可以选,不同的任务使用不同的显卡,第一块:cuda:0,第二块:cuda:1,这取决于显卡的数量
model.to(device) #整个模型的缓存、模块都放到cuda中,转成cuda Tensor

criterion = torch.nn.CrossEntropyLoss()  #相当于size_average=True
optimizer = torch.optim.SGD(model.parameters(), lr=0.01,momentum=0.5)  #momentum为动量参数

def train(epoch):
    running_loss = 0.0
    for batch_idx,data in enumerate(train_loader,0): #(x,y)放到data中,dataloader自动将它们转成tensor  batch_idx相当于i
        # prepare data
        inputs, target = data  #x存到inputs中,y存到target中
        inputs, target = inputs.to(device),target.to(device)  #放到同一块显卡中
        optimizer.zero_grad()

        # forward+backward+update
        outputs = model(inputs)
        loss = criterion(outputs,target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()  #用item,不然会构建计算图  计算一个batch的损失
        if batch_idx % 300 ==299:
            print('[%d %5d] loss:%.3f' % (epoch+1,batch_idx+1,running_loss/300))
            running_loss = 0.0

def test():
    correct = 0
    total = 0
    with torch.no_grad():  #测试时不需要计算梯度
        for data in test_loader:
            images,target = data
            images, target = images.to(device), target.to(device)  # 放到同一块显卡中
            outputs = model(images)
            _,predicted = torch.max(outputs.data,dim=1)
            #torch.max()函数返回的是两个值,第一个值是具体的value,即输出的最大值(用下划线表示),第二个值是value所在的index(也就是predicted)
            #dim=1表示输出所在行的最大值,dim=0表示输出所在列的最大值
            total += target.size(0)   #求样本总数
            correct += (predicted==target).sum().item()  #.item()将tensor转化为普通的float或int型
    print('Accuracy on test set:%d %% [%d/%d]'%(100*correct/total,correct,total))  #%%表示文字%   后面的%表示传入数据

if __name__ =='__main__':
    for epoch in range(10):
        train(epoch)
        test()


结果:

Exercise

 从计算图可以看出,有三个整的块(卷积-ReLU-池化),然后flatten展平(view函数),再有两个线性层,最后一个线性层为全连接层FC。

输入:(batch,1,28,28)

经过conv1 变为(batch,16,24,24),经过最大池化(batch,16,12,12)

经过conv2 变为(batch,32,12,12),经过最大池化(batch,32,6,6)

经过conv3变为(batch,64,6,6),经过最大池化(batch,64,3,3),最后的像素为64*3*3=576个

import torch
from torch.utils.data import DataLoader
from torchvision import transforms   #针对图像进行处理的工具包
from torchvision import datasets
import torch.nn.functional as F  #for using ReLU

batch_size = 64
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,),(0.3081,))])

train_dataset = datasets.MNIST(root='../dataset/mnist',train=True,transform=transform,download=True)  #mnist为28*28大小的灰度图像
test_dataset = datasets.MNIST(root='../dataset/mnist',train=False,transform=transform,download=True)

train_loader = DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True)   #打乱->shuffle=true,训练要打乱
test_loader = DataLoader(dataset=test_dataset,batch_size=batch_size,shuffle=False)    #测试不用shuffle,可以观察结果

class Net(torch.nn.Module):
    def __init__(self):    #定义需要调用的函数
        super(Net,self).__init__()
        self.conv1 = torch.nn.Conv2d(1,16,kernel_size=5)     #卷积1
        self.conv2 = torch.nn.Conv2d(16, 32,kernel_size=3,padding=1)   #卷积2
        self.conv3 =  torch.nn.Conv2d(32, 64,kernel_size=3,padding=1)  #卷积3
        self.pool= torch.nn.MaxPool2d(kernel_size=2)         #池化

        self.l1 = torch.nn.Linear(576,256)
        self.l2 = torch.nn.Linear(256,128)
        self.fc = torch.nn.Linear(128,10)                    #全连接

    def forward(self,x):
        #Flatten data from(n,1,28,28) to (n,784)
        batch_size = x.size(0)
        x = self.pool(F.relu(self.conv1(x)))     #relu作为激活函数,先卷积再ReLU再池化
        x = self.pool(F.relu(self.conv2(x)))
        x = self.pool(F.relu(self.conv3(x)))
        x = x.view(batch_size,-1)    #flatten,展平
        x = self.l1(x)
        x = self.l2(x)
        x = self.fc(x)   #要用交叉熵损失,所以最后一层不做激活
        return x

model = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#使用GPU,可以选,不同的任务使用不同的显卡,第一块:cuda:0,第二块:cuda:1,这取决于显卡的数量
model.to(device) #整个模型的缓存、模块都放到cuda中,转成cuda Tensor

criterion = torch.nn.CrossEntropyLoss()  #相当于size_average=True
optimizer = torch.optim.SGD(model.parameters(), lr=0.01,momentum=0.5)  #momentum为动量参数

def train(epoch):
    running_loss = 0.0
    for batch_idx,data in enumerate(train_loader,0): #(x,y)放到data中,dataloader自动将它们转成tensor  batch_idx相当于i
        # prepare data
        inputs, target = data  #x存到inputs中,y存到target中
        inputs, target = inputs.to(device),target.to(device)  #放到同一块显卡中
        optimizer.zero_grad()

        # forward+backward+update
        outputs = model(inputs)
        loss = criterion(outputs,target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()  #用item,不然会构建计算图  计算一个batch的损失
        if batch_idx % 300 ==299:
            print('[%d %5d] loss:%.3f' % (epoch+1,batch_idx+1,running_loss/300))
            running_loss = 0.0

def test():
    correct = 0
    total = 0
    with torch.no_grad():  #测试时不需要计算梯度
        for data in test_loader:
            images,target = data
            images, target = images.to(device), target.to(device)  # 放到同一块显卡中
            outputs = model(images)
            _,predicted = torch.max(outputs.data,dim=1)
            #torch.max()函数返回的是两个值,第一个值是具体的value,即输出的最大值(用下划线表示),第二个值是value所在的index(也就是predicted)
            #dim=1表示输出所在行的最大值,dim=0表示输出所在列的最大值
            total += target.size(0)   #求样本总数
            correct += (predicted==target).sum().item()  #.item()将tensor转化为普通的float或int型
    print('Accuracy on test set:%d %% [%d/%d]'%(100*correct/total,correct,total))  #%%表示文字%   后面的%表示传入数据

if __name__ =='__main__':
    for epoch in range(10):
        train(epoch)
        test()


输出:

 最终准确率为99%。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值