2025年MathorCup数学应用挑战赛【B题成品论文】第一、二问(免费分享)

注:该内容由“数模加油站”原创,无偿分享,可以领取参考但不要利用该内容倒卖,谢谢!

  音智策引迁程,老城焕新颜 第一问

五、 模型建立与求解

5.1 问题一模型建立与求解

5.1.1 问题一求解思路

在问题一中,任务的核心是构建一个合理的搬迁补偿决策模型,以推动居民在城市更新中的主动参与。考虑到老城院落具有传统合院结构和空间利用复杂的特点,居民搬迁意愿受到多个因素的共同影响,其中包括现有地块的面积与新迁入地块面积之间的比例关系、住宅朝向带来的采光差异、以及搬迁后房屋可能进行的修缮翻新。因此,我们首先应建立一个反映居民主观满意度的多因素综合模型,该模型以搬迁后的居住条件提升为基础,设定“面积补偿”、“采光补偿”与“修缮补偿”三个主要指标,同时引入地块地理位置因素(如距离街道的远近、周边密集度等)作为辅助项进行加权评估。基于此满意度函数,可以判断在不同补偿策略下居民是否同意搬迁,从而为后续搬迁计划提供评估依据。此外,还需注意一些潜在但关键的影响因子,如居住习惯依赖、邻里关系、文化保护心理等非量化变量,它们可以通过专家赋权或设定评价指标的方式,定性引入模型之中。

5.1.2 问题一模型建立
(1)问题背景与目标

本问题要求我们建立一个多因素综合的居民搬迁满意度与补偿建模系统,以便评估每一户居民是否愿意在现有条件下接受“平移置换”式的搬迁。建模目标是:

a. 给出一种合理的搬迁意愿量化方式;
b. 综合考虑面积、采光、修缮等补偿方式;
c. 评估迁入候选地块对当前居住地的改善程度;
d. 推导可接受搬迁的居民列表,为问题二提供候选方案池。

(2)变量定义与参数设定

设街区中共有 n 个当前有居民居住的地块,编号为 i =1,2,...,n,共有 m 个空置地块可用于搬迁,编号为 j =1,2,...,m。我们定义如下变量:

(3)满意度模型构建

(4)补偿因素约束条件

面积补偿约束:

(6)模型输出与作用

该模型可输出:

a. 可搬迁居民列表;
b. 可行搬迁路径 (i, j);
c. 搬迁满意度评分矩阵 U ;
d. 修缮总预算与期望满意度提升评估;
e. 为问题二提供搬迁可行性边界与候选集。

5.1.3 问题一模型求解与分析

为科学衡量居民对“平移置换”式搬迁的接受程度,我们设计了一套搬迁补偿满意度评价模型,综合考虑了居住面积、采光条件、修缮投入及地块地理便利性等因素。通过构建多因子加权满意度函数,我们能够对每一对“居民地块-候选地块”组合进行评分,并以此判定其是否具有搬迁的可能性。

模型中,我们定义居民满意度函数为:

通过遍历所有居民与空置地块的组合,我们生成了搬迁满意度评分矩阵,并以热力图形式进行可视化,如图 1 所示。横轴表示候选目标地块,纵轴表示当前居民地块,颜色越深表示该搬迁组合的满意度评分越高。该热力图直观展示了全体搬迁可行路径的质量分布情况,有助于后续的最优搬迁策略决策。

居民地块对各目标地块的搬迁满意度评分热力图

进一步地,我们依据评分矩阵提取每位居民搬迁满意度最高的前 3 个候选地块,形成了搬迁推荐结果表(见表 2)。该表记录了每个居民可能搬迁的目标地块ID、评分细节及是否满足搬迁阈值条件,为后续搬迁优化提供可选解空间。

从结果来看,大多数居民在当前空置资源池中,均可找到2~3个符合条件的替代居住地块,且满意度评分普遍集中于 0.7 至 1.3 之间,说明“同区域平移式置换”在规划上具备一定的可行性。少数居民由于当前地块面积较大或朝向较好,在目标候选集中未能满足全部搬迁约束,此类情况可通过引入“分批搬迁”“修缮加强”或“组合置换”等策略予以优化。
综上,本模型有效量化了搬迁可行性与居民接受度,并为问题二提供了一个具有可行解约束条件的搬迁路径候选库,奠定了后续优化调度的基础。


  音智策引迁程,老城焕新颜 第一问

5.2 问题二模型建立与求解

5.2.1 问题二求解思路

问题二则在问题一的基础上,进一步聚焦于搬迁方案的最优化设计,其目标是通过居民间的合理平移置换,实现更多“完整院落”的腾空,为后续商业开发提供最大化的整体价值。在该问题中,我们应构建一个以“整院腾空面积最大化”为目标的优化模型,约束条件涵盖居民搬迁补偿策略中的各项限定,如面积和朝向不降、修缮费用限制、总预算不超标等。在建模过程中,可考虑以整数规划为基础建模框架,辅以智能优化算法(如遗传算法、模拟退火等)进行求解。同时,为兼顾实际开发中的“开发价值最大化”诉求,应在模型中引入“整院之间的空间邻近性”因子,对相邻院落联合腾退给予价值加权,从而体现“毗邻整院”的附加收益。在模型求解后,应输出具体搬迁路径(包括每户居民从何地迁至何处),并据此计算搬迁总成本、整院腾空面积、最终出租收益和利润空间,供开发商用于决策参考。

5.2.2 问题二模型建立
(1)问题重述与目标解析

基于问题一得到的“可搬迁居民-目标地块”对应关系与满意度评价,问题二的任务是进一步设计一个搬迁调度方案,使得在满足居民补偿条件与总预算限制的基础上,尽可能多地实现“整院腾退”,并提升整体搬迁质量与开发价值。
目标不仅包括整院数量最大化,还要在整院数量相同的前提下,优先:

a. 腾退更大面积的杂院;
b. 腾退彼此毗邻的杂院,以实现联合开发;
c. 搬迁居民尽量少,控制预算开销。

本问题本质上是一个多目标整数规划问题,包含组合优化、空间邻接图结构、预算约束和居民行为响应约束。

(2)变量定义

设老城区中:

(3)目标函数设计

(4)约束条件构建

(5)搬迁成本模型Cij

(6)建模求解策略

(7)模型输出与应用价值

以上内容可直接服务于后续城市更新决策,选出搬迁收益最优、扰动最小的方案。

5.2.3 问题二模型求解与分析

在问题一的满意度评估基础上,问题二致力于制定一种在预算限制下的搬迁策略,使整院腾退数量最大,同时优先腾退空间相邻、总面积更大的院落,并尽可能减少搬迁扰动。我们采用贪心策略,优先选择满意度高、成本低的搬迁路径,在满足搬迁满意度阈值 θ = 0.6 及成本不超过 2600 万元的前提下构建搬迁路径集合。

(1)模型求解结果

根据搬迁路径结果表,最终实际搬迁居民数量为 13 户,搬迁路径详情见表 3(详见附表《问题二_搬迁路径结果表.xlsx》)。搬迁路径经过满意度筛选与成本控制后,确保:

每位居民仅搬迁一次;
每个目标地块仅接收一户;
总搬迁成本控制在规划上限内(2594万元)。

(2)整院腾退结果

根据院落内所有住户是否全部完成搬迁,判定是否实现整院腾退。本次模型结果共成功实现 3 个院落的整院腾退,分别为:

院落 ID:95、51、86
对应总面积:约 724 平方米
整院面积分布见图 2:

图2 成功腾退的整院及其面积分布

其中院落95 与51 为本轮搬迁策略的主要贡献者,总面积分别约为340 ㎡与320 ㎡,在成本受限的前提下达到了最优的面积腾退效果。

(3)整院空间结构分析

为进一步分析腾退整院之间的空间潜力,我们根据院落编号构建了整院编号邻接图(以编号相邻代替空间相邻关系),如图 3 所示:

图3 成功腾退整院的邻接结构图(示意)

从图中可见,当前版本腾退的院落相对较分散,未构成大规模相邻块状结构,后续可引入邻接性作为优化目标项,提升联合开发效率。

(4)收益与盈利评估

设整院腾退后用于商业/租赁用途,日租金标准为 ¥10 元/㎡,运营周期为 10 年(3650 天),则租金收入估算如下:

本次方案在实现整院腾退的同时,实现了正向盈利,说明搬迁调度模型具有现实操作可行性与收益潜力。

第十mathorcupb优秀作品是一道非常有趣和具有挑战性的数学。这道目要求参赛者解决一个复杂的几何,结合数学技巧和创造力来找到最佳解决方案。 这个引发了参赛者们的思考和深入研究,由于的复杂性,参赛者必须运用各种几何原理和定理,如勾股定理、相似三角形以及三角函数等。同时,参赛者还需要灵活运用计算机辅助工具,如几何绘图软件和数值计算工具等,以求得高精度和准确的解。 优秀作品在解决的过程中展现了参赛者们的数学思维和分析能力。他们首先对进行了全面而系统的分析,搞清楚的条件和要求。然后,他们利用数学知识和计算工具进行推导和计算,找到了解决方案。在解决的过程中,他们还遇到了一些困难和挑战,但他们不断尝试和探索,寻找最佳的解决方法。 在解决的结果上,优秀作品展示出了参赛者们的才华和创意。他们的解决方案不仅满足了的要求,而且还提出了一些新的观点和思路。他们的解决方法和思维方式不仅经过深入的思考和推敲,而且还展现了数学的美和智慧。 总的来说,第十mathorcupb的优秀作品是参赛者们智慧和努力的结晶。他们通过运用数学知识和技巧,灵活应用计算工具,解决了这个复杂的几何,并展现了他们在数学领域的才华和创意。这些作品不仅丰富了数学研究的内容,同时也为其他参赛者提供了学习和借鉴的机会。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值