【 MATLAB 】ndgrid 和 meshgrid 对比理解以及应用

目录

背景

一维空间中的矩形网格:

二维空间中的矩形网格:

三维空间中的矩形网格:

语法对比

1、在网格域上计算函数:

2、插入数据


背景

本博文主要分析 ndgrid, meshgrid是附送的,都是类似的东西,学会了一个,另一个很容易就理解了。

为什么会对 ndgrid 感兴趣呢?因为对它的不理解,导致我少写了几篇博文,最后,决定将 ndgrid 总结一番,去除这个绊脚石,或者加工一下,让它称为垫脚石。

我决定从低维到高维的思路来分析 ndgrid 到底怎么用?

ndgrid以及meshgrid其实就是将利用坐标轴上的坐标生成一些网格,一维的情况就不存在网格,所以坐标还是坐标;二维的情况,ndgrid的输入是两个矢量,可以看做是分别在x和y轴上的坐标,然后根据这些坐标生成网格点,所以输出肯定是2阶矩阵了。依次类推,可以得到高维的情况。

下面这句话,摘自网络看到的内容:对于网格矢量(gird vectors)x1gv,x2gv,x3gv,长度分别是M,N,P。ndgrid(x1gv, x2gv)函数输出一个MXN的数组,而meshgrid(x1gv, x2gv)输出一个N*M的数组,类似的,ndgrid(x1gv, x2gv, x3gv)函数输出一个M*N*P 的数组,而meshgrid(x1gv, x2gv, x3gv)输出一个N*M*P 的数组。 

https://blog.csdn.net/u012183487/article/details/76149279

看不懂没关系,这里只是提前预热下而已,正式的内容下面一一呈现。


主题是N-D空间中的矩形网格。

一维空间中的矩形网格:

>> a = -3:3

a =

    -3    -2    -1     0     1     2     3

>> x = ndgrid(a)

x =

    -3
    -2
    -1
     0
     1
     2
     3

对一维空间,也即一个坐标轴来划分网格意义不大,主要是做一个对比作用。


二维空间中的矩形网格:

>> a = -3:3

a =

    -3    -2    -1     0     1     2     3

>> b = -2:2

b =

    -2    -1     0     1     2

>> [x,y]=ndgrid(a,b)

x =

    -3    -3    -3    -3    -3
    -2    -2    -2    -2    -2
    -1    -1    -1    -1    -1
     0     0     0     0     0
     1     1     1     1     1
     2     2     2     2     2
     3     3     3     3     3


y =

    -2    -1     0     1     2
    -2    -1     0     1     2
    -2    -1     0     1     2
    -2    -1     0     1     2
    -2    -1     0     1     2
    -2    -1     0     1     2
    -2    -1     0     1     2

从工作空间可以看到,a是7维的向量,b是5维的向量,那么使用ndgrid生成的网格点,x是一个7*5的矩阵,其x的列是a的复制;y是一个7*5的矩阵&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李锐博恩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值