The Cramer-Rao Lower Bound (CRLB) gives a lower estimate for the variance of an unbiased estimator. Estimators that are close to the CLRB are more unbiased (i.e. more preferable to use) than estimators further away.
Cramer-Rao下界(CRLB)给出了无偏估计的方差的较低估计。 接近CLRB的估计比不远处的估计更加无偏(即更优选使用)。
The Cramer-Rao Lower bound is theoretical; Sometimes a perfectly unbiased estimator (i.e. one that meets the CRLB) doesn’t exist. Additionally, the CRLB is difficult to calculate unless you have a very simple scenario. Easier, general, alternatives for finding the best estimator do exist. You may want to consider running a more practical alternative for point estimation, like the Method of Moments.
Cramer-Rao下界是理论上的; 有时,不存在完全无偏估计(即符合CRLB的估计)。 此外,除非您有一个非常简单的场景,否则CRLB很难计算。 找到最佳估算器的更简单,通用的替代方案确实存在。 您可能需要考虑为点估计运行更实用的替代方法,例如矩量法。
The CLRB can be used for a variety of reasons, including:
- Creating a benchmark for a best possible measure — against which all other estimators are measured. If you have several estimators to choose from, this can be very useful.
- Feasibility studies to find out if it’s possible to meet specifications (e.g. sensor usefulness).
- Can occasionally provide form for MVUE.
可以出于各种原因使用CLRB,包括:
- 为最佳可能度量创建基准 - 衡量所有其他估算器的基准。 如果您有多个估算器可供选择,这可能非常有用。
- 可行性研究,以确定是否可以满足规范(例如传感器的有用性)。
Methods
There are a couple of different ways you can calculate the CRLB. The most common form, which uses Fisher information is:
您可以通过几种不同的方式计算CRLB。 使用Fisher信息的最常见形式是:
Let X1, X2,…Xn be a random sample with pdf f (x,Θ). If
is an unbiased estimator for Θ, then:
Where:
Is the Fisher Information.
Other Names
The Cramer-Rao Lower Bound is also called:
- Cramer-Rao Bound (CRB),
- Cramer-Rao inequality,
- Information inequality,
- Rao-Cramér Lower Bound and Efficiency.
https://www.statisticshowto.datasciencecentral.com/cramer-rao-lower-bound/