目录
3.1 Lane detection with relay chain
Bilateral predictions for complex topologies
Global shape message learning.
3.2 Lane encoder for relay station construction
Introduction
我们构造了一个transfer map 表示从当前像素到同一车道上的两个邻居的相对位置。此外,我们应用双边预测策略,旨在提高复杂拓扑车道的泛化能力。最后,我们设计了全局形状信息学习模块。具体地说,该模块预测了描述从每个前景点到同一车道上的两个终点的距离的距离图。
我们提出了一种新的车道中继链表示方法,以同时建模车道的全局几何形状和局部位置信息。
我们介绍了一种新的车道编码和解码算法,以方便与中继链表示的车道检测过程。
在四个主要的车道检测基准上的广泛实验表明,我们的方法击败了最先进的替代方案,通常以一个明显的优势,并实现了实时性能。
3.1 Lane detection with relay chain
Relay station construction
每个中继站p=(px,py)预测在同一车道上的相邻点p下=(p下x,下xy)的偏移,如等式所示2、在两个方向上的3。通
过消除垂直约束,可以显著地拟合车道的变形趋势。然后将所有的中继站连接起来,形成一个链,这就是车道
Bilateral predictions for complex topologies
我们采用双向检测策略,将下一个相邻点p分割为正向点pf和后点pb。
设F为主干图像的输出特征图,其分辨率比原始图像下降了4倍
我们设计了一个转移输出头,并选择F作为输入。F通过基于卷积的传输头得到传输图T,它由正向和向后分量Tf,Tb∈RH-×W×2组成
Global shape message learning.
详细地说,我们设计了一个距离头来预测距离图D,它由前向和后向分量Df,Db∈RH×W×1组成。
3.2 Lane encoder for relay station construction
给定预测的二值分割掩模S、传输图T和距离图D,我们收集S的所有前景点,并使用Point-NMS得到关键点K的稀疏集。每个关键点p∈K作为起点恢复一条全局曲线。
3.4 Network architecture
给定一个图像∈RH×W×3,分割头预测二进制分割面具S∈RH×W×1,转移头预测转移地图T由向前和向后部分Tf,Tb∈RH×W×2,和距离头预测的距离地图D由Df,Db∈RH×W×1。
3.5 Loss function
采用OHEM损失[26]进行训练,解决由于车道分割点稀疏性导致的类不平衡问题。
其中,Spos是正点的集合,而Sneg是最有可能被误诊为正点的负点的集合。