Reversible Primes (20)stoi应用

reversible prime in any number system is a prime whose "reverse" in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.

Now given any two positive integers N (< 105) and D (1 < D <= 10), you are supposed to tell if N is a reversible prime with radix D.

Input Specification:

The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.

Output Specification:

For each test case, print in one line "Yes" if N is a reversible prime with radix D, or "No" if not.

Sample Input:
73 10
23 2
23 10
-2
Sample Output:
Yes
Yes
No
int stoi (const string&  str, size_t* idx = 0, int base = 10);//将字符转化为整形
int stol (const string&  str, size_t* idx = 0, int base = 10);//字符转化为long
int stoul (const string&  str, size_t* idx = 0, int base = 10);//将字符转化为unsigned long
int stoll (const string&  str, size_t* idx = 0, int base = 10);//将字符转化为long long
int stoull (const string&  str, size_t* idx = 0, int base = 10);//将字符转化为unsigned long long
str表示原始字符串,idx表示s中第一个非字符数值下标,默认为0,若字符中都是数字应该输入nullptr,base是转换所用基数默认为10
例如str=“110” 用stoi(str,nullptr,2) 就转化为了整数6


题意:

给定一个数N,给定一个基数D若N为素数并且将N转化为D进制后反向N’,也为素数

例如23 2

23为素数,将23转化为2进制为10111,反向后为11101是29也为素数所以输出Yes

#include<iostream>
#include<string>
using namespace std;

bool isprime(int n)//判断素数
{
	if(n<2)
		return false;
	for(int i=2;i<=n/2;i++)
		if(n%i==0)
			return false;
	return true;
}
int reverse(int n,int radix)//按进制反向
{
	string s;
	while(n>0)//求反向radix进制数
	{
		s.push_back(n%radix+'0');
		n/=radix;
	}
	return stoi(s,nullptr,radix);
	
}
int main(){
	int n,radix;
	while(cin>>n&&n>= 0)
	{
		cin>>radix;
		if(isprime(n)&&isprime(reverse(n,radix)))
			cout<<"Yes"<<endl;
		else
			cout<<"No"<<endl;		
	}
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值