一、从GPT-3到ChatGPT的技术跃迁路径
(一)GPT-3.5系列:代码训练与指令微调的双重升级
-
CodeX:代码语料的注入式增强
OpenAI在GPT-3基础上追加3000万行开源代码(涵盖Python、JavaScript等主流语言)进行微调,诞生CodeX模型。其核心改进包括:- 逻辑推理强化:代码的语法规则和逻辑结构迫使模型学习因果关系建模,在GSM8K数学推理任务中准确率从GPT-3的38.7%提升至52.3%。
- 思维链(CoT)涌现:代码生成过程天然包含步骤分解,促使模型形成“分步思考”能力,在WebQSP问答任务中,多步推理回答比例从21%提升至49%。
-
text-davinci-002:指令理解的范式革新
通过混合文本语料(含大量指令-响应数据)进行监督微调(SFT),模型学会解析用户意图。例如:- 输入“用Python写一个冒泡排序算法”,模型可直接生成完整代码,准确率达91%。
- 在MultiWOZ对话数据集,意图识别F1值从GPT-3的78%提升至89%,支持多轮对话中的意图追踪。
(二)RLHF:让模型学会“人类偏好”的三阶段工程
1. 监督微调(SFT):构建初始对话能力
- 数据采集:雇佣标注员生成高质量对话样本,涵盖知识问答、创意写作、代码调试等场景。例如,针对“如何备考托福”,标注员需提供结构清晰的回答框架。
- 模型训练:在CodeX基础上,使用SFT将模型输出与标注样本对齐,使生成文本的连贯性评分(如ROUGE-L)提升18%。
2. 奖励模型(RM)训练:量化人类偏好
- 成对比较法:标注员对同一问题的多个回答进行排序,例如判断“A回答比B更准确”。通过数千万次比较,训练奖励模型预测人类偏好分数。
- 损失函数设计:采用Learning to Rank损失,公式为:
L = − 1 C ∑ log σ ( r θ ( x , y w ) − r θ ( x , y l ) ) \mathcal{L} = -\frac{1}{C} \sum \log \sigma(r_\theta(x, y_w) - r_\theta(x, y_l)) L=−C1∑logσ(rθ(x,yw)−rθ(x,y